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Abstract. Historical maps provide a rich source of information for re-
searchers in the social and natural sciences. These maps contain detailed
documentation of a wide variety of natural and human-made features
and their changes over time, such as the changes in the transportation
networks and the decline of wetlands. It can be labor-intensive for a sci-
entist to analyze changes across space and time in such maps, even after
they have been digitized and converted to a vector format. In this pa-
per, we present an unsupervised approach that converts vector data of
geographic features extracted from multiple historical maps into linked
spatio-temporal data. The resulting graphs can be easily queried and
visualized to understand the changes in specific regions over time. We
evaluate our technique on railroad network data extracted from USGS
historical topographic maps for several regions over multiple map sheets
and demonstrate how the automatically constructed linked geospatial
data enables effective querying of the changes over different time peri-
ods.

Keywords: Linked Spatio-Temporal Data · Historical Maps · Knowl-
edge Graphs · Semantic Web

1 Introduction

Historical map archives contain valuable geographic information on both natu-
ral and human-made features across time and space. The spatio-temporal data
extracted from these documents are important since they can convey where and
when changes took place. This type of data enables long-term analysis, such
as detecting the changes in railroad networks between several map editions of
the same region and can support decision-making related to the development of
transportation infrastructure. Many applications assessing geographic changes
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over time typically require searching, discovering, and manually identifying rele-
vant data. This is a difficult and laborious task that requires domain knowledge
and familiarity with various data formats, and the task is often susceptible to
human error.

Linked geospatial data has been receiving increased attention in recent years
as researchers and practitioners have begun to explore the wealth of geospatial
information on the Web. Recent technological advances facilitate the efficient
extraction of vectorized information from scanned historical maps and other
digital data to facilitate the integration of the extracted information with other
datasets in Geographic Information Systems (GIS) [4,5,11,3].

Previous work on creating linked data from geospatial information has fo-
cused on the problem of transforming the vector data into RDF graphs [2,6,12].
However, this line of work does not address the issue of geospatial entity linkage,
e.g., building linked geospatial data with a semantic relationship between vec-
tor data elements across maps of the same region. To better support analytical
tasks and understand how map features change over time, we need more than
just the extracted vector data from individual maps. In addition to the vector
data extracted from historical maps, we need the relationship between the vec-
tor data elements (segments) composing the desired features across maps, and
the detailed metadata and semantic properties that describe that data. To en-
able change analysis over time and across multiple spatial scales, we present an
unsupervised approach to match, integrate, and relate vector data of map fea-
tures using linked data principles and provide corresponding semantics for the
representation of the data.

The task we address here is that given geospatial vector data extracted from
numerous map editions covering the same region, we want to construct a knowl-
edge graph depicting all the feature segments that represent the original data,
their relations and their semantics across different points in time. Using the con-
structed knowledge graph, we enable tackling more specific downstream analysis
tasks. These may include the visualization of feature changes over time and the
exploration of supplementary information related to the region using additional
knowledge bases we link to our graph.

As an example, consider the maps shown in Figure 1a where changes in the
Louisville, New Albany and Chicago railroad system have occurred between 1886
and 1904. Figure 1b shows the railroad segment changes between the different
map editions. Segments that have been added are marked in red and segments
that have been removed are marked in blue. Assuming we have the data available
as vector data (which can be generated from scanned maps using [5]), our task in
such a setting would be to construct a knowledge graph describing the different
segment elements in these maps with a conventional semantic representation
for the railroad line segments in each map edition. This would include objects
from a list of common geographic features (points, lines, or polygons), their
geocoordinates, and their matching temporal coverage to allow easy analysis
and visualization.
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(a) Louisville, New Albany and Chicago railroad sys-
tem maps in 1886 (left) and 1904 (right)

(b) Visual representation
of the change in the rail-
road system; additions are
in red, removals are in blue

Fig. 1. An example of a railroad system change over time

Our approach is not only helpful in making the data widely available to re-
searchers but also enables users to answer complex queries in an unsupervised
manner, such as investigating the interrelationships between human and environ-
mental systems. Our approach also benefits from the open and connective nature
of linked data. Compared to existing tools such as PostGIS4 that can only han-
dle queries related to geospatial relationships within local databases, linked data
can utilize many widely available knowledge sources, such as GeoNames and
OpenStreetMap5, in the semantic web and enable rich semantic queries.

Once we convert the map data into linked data, we can execute SPARQL
queries to depict the changes in map segments over time and thus accelerate and
improve spatio-temporal analysis tasks. Using a semantic representation that
includes geospatial features, we are able to support researchers to query and
visualize changes in maps over time and allow the development of data analytics
applications that could have great implications for environmental, economic or
societal purposes.

The rest of the paper is organized as follows. We present our proposed pipeline
in Section 2. In Section 3 we evaluate our approach by automatically building a
linked data representation for a series of railroad networks from historical maps
covering two different regions from different time periods. Related work is dis-
cussed in Section 4. We conclude, discuss, and present future work in Section 5.

4 https://postgis.net/
5 https://www.openstreetmap.org/

https://postgis.net/
https://www.openstreetmap.org/
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2 Building and Querying Linked Spatio-Temporal Data

2.1 Taxonomy

Figure 2 shows the taxonomy of terms used in this paper. We refer to the elements
composing the vector data extracted from historical maps as segments. These
segments may be decomposed to small building blocks (we refer to these as
segments or segment elements), which are encoded as WKT (well-known text
representation of geometry) multi-line strings. These strings are composed from
a collection of tuples of latitude and longitude coordinates.

2.2 Overall Approach

Fig. 2. Taxonomy of terms
used in the paper

The unsupervised pipeline we propose for construct-
ing linked data from vector data of extracted map
feature segments consists of several major steps as il-
lustrated in Figure 3. These steps can be summarized
as follows:

1. Automatically partition the feature segments
from the original shapefiles (vector data) into
collections of segments using a spatially-enabled
database service (i.e., PostGIS) to form groups of
segments (see section 2.3).

2. Utilize a reverse-geocoding service (i.e., Open-
StreetMap) to map the partitioned feature seg-
ment geometric literals to existing instances in
the semantic web (i.e., LinkedGeoData [1]) (see
section 2.4)

3. Construct the knowledge graph by generating
RDF triples following a pre-defined semantic
model using the data we generated from previ-
ous steps (see sections 2.5 and 2.6)

Once the RDF data is deployed, users can easily
interact with the feature segment data and perform queries (section 2.7), which
allow end-users to visualize the data and supports the development of spatio-
temporal applications.

Fig. 3. Pipeline for constructing linked data from vector data
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2.3 Automatic Feature Segmentation

The first task in our pipeline is the creation of segment partitions (elements)
that can represent the various geographic features (e.g., railroad network) across
different maps (same region, different map editions) in a granular and efficient
fashion. This task can be classified as a common entity matching/linking and
entity “partitioning” task. Given two segment elements from two map editions
of the same region, we want to identify which parts of those elements coincide
and thus represent the same parts of the feature. This allows us to generate
segment groups of elements that are more granular and can be used to represent
the common and the distinct parts of features.

Consider a simplified example consisting of segments (geometry of line type)
from two map editions (Figure 4a), where segment A is from an older map edition
and segment B is from the latest map edition with a part of the feature that
has been changed. In order to detect those parts that exist in both segments, we
split each of these segments into several sub-segments based on the intersection
of the segments, as shown in Figures 4b and 4c. When a third source (another
map edition also containing the feature), C, is added, a similar segmentation
process is executed as shown in Figures 4d and 4e.

(a) Segments A
and B have com-
mon and distinct
segments

(b) Buffer out and
find the common
parts

(c) Partition seg-
ments

(d) Segment C is
added

(e) Final partition-
ing

Fig. 4. Segments partitioning process: spatial buffers are used to identify the same
segments considering potential positional offsets of the data

As we mentioned earlier, we use a spatially-enabled database service to sim-
plify handling data manipulations over feature segments. PostGIS is a powerful
PostgreSQL extension for spatial data storage and query. It offers various func-
tions to manipulate and transform geographic objects in databases. To handle
the task mentioned earlier efficiently and enable an incremental addition of maps
over time, we implemented Algorithm 1. The algorithm performs the segmen-
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tation tasks by employing several PostGIS application programming interface
(API) calls over the geometries of our segments that we loaded in the database.

In detail, the procedure works as follows. The for loop in line 1 iterates over
each collection of vector data (segment geometries) in each map edition. For each
iteration, lines 2-3 extract the set of feature segments from a given shapefile and
map them to a node i (representing the segment) which is then added to the
directed acyclic graph (data structure) G. The graph G will eventually hold our
final set of segments and record their relations in a data structure within the
graph. Line 4 retrieves the leaf nodes from graph G to list L. In the first iteration
list L is empty. In the next iterations it will include the nodes which represent
the segments that are similar to and distinct from segments from other map
editions in the same degree (distance in the graph from the root) as their parent
node. Then, for each “leaf” node we execute the following steps:

1. Segment Intersection. Line 6 extracts the set of feature segments from the
leaf segment k. Line 7 performs an intersection of segment i with segment
k by creating a buffer for the vector data and intersecting this buffer with
the vector data in segment k. This results in the set of segments named Fα

which is then mapped to segment α and added to the graph G as a child
node of i and k (line 8).

2. Segment Difference (local “Subtraction”). In line 9, we generate the
segment elements of the data in segment k that are not in segment i, which
results in the set of segment elements named Fγ . Then, Fγ is mapped to
segment γ and added to the graph G as a child node of k (line 10).

3. Segment Union-Difference (global “Subtraction”). Once we finish
going over the list of leaves, we compute the unique segments that exist
in the added segment (from the lastly added map edition) by reducing the
union of the leaf node intersections (with previous processed maps) from
the original map segment i as described in line 12. This results in the set of
segment elements named Fδ. Then, in line 13, Fδ is mapped to segment δ
and added to the graph G as a child node of i.

The above procedure is demonstrated in Figures 4a, 4b and 4c where seg-
ments A and B are nodes i and k, respectively and AB, B′ and A′ are nodes
α, γ and δ, respectively. The relations between the nodes in graph G carry a
semantic meaning between the different segments and will play a critical role
in the RDF generation and query mechanism since they represent the relations
between the segment elements across different time extents of the same region.
The hierarchical relationship is built with respect to these attributes and allows
us to retrieve the segments that will represent the changes in feature segments
when running a query.

2.4 Reverse Geocoding and Linking to Linked Open Vocabularies

In the last two decades there has been a major effort in publishing data following
semantic web and linked data principles. There are now tens of billions of facts
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Data: a set M of segments for different map editions of the same region
(shapefiles)

Result: a directed acyclic graph G of feature segment objects (nodes) and
their relations

1 foreach i ∈M do
2 Fi = set of geometry features (segment elements) in i;
3 G.add(i 7→ Fi);
4 L = list of current leaf nodes in G;
5 foreach k ∈ L do
6 Fk = set of geometry features (segment elements) in k;
7 Fα = Fi

⋂
Fk;

8 G.add(α 7→ Fα) and set i, k as parents of α;
9 Fγ = Fk \ Fα;

10 G.add(γ 7→ Fγ) and set k as parent of γ;

11 end
12 Fδ = Fi \ (

⋃
j∈L Fj);

13 G.add(δ 7→ Fδ) and set i as parent of δ;

14 end
Algorithm 1: The feature segments partitioning algorithm

spanning hundreds of linked datasets on the web covering a wide range of topics.
To better describe the semantics of data and reuse well-documented vocabularies
in the linked data ecosystem, we propose a simple mechanism to allow linking the
extracted segments from the processed historical maps to additional knowledge
bases on the web. This is again a task of entity matching; this time it is with an
entity in an external knowledge base.

Fig. 5. Method for acquiring external knowl-
edge base instances

Our proposed method is based
on reverse geocoding. Reverse geocod-
ing is the process of mapping the
latitude and longitude measures of
a point or a bounding box to a
readable address or place name.
Examples of these services include
the GeoNames reverse geocoding
web service6 and OpenStreetMap’s
API.7 These services permit for
a given location the identification
of nearby street addresses, places,
areal subdivisions, etc.

The “geo-linking” process is depicted in Algorithm 2 and illustrated in Figure
5. We start with individual features extracted from the original maps that are of
known type (T in Algorithm 2). In the case of the data we present later in the
evaluation section, we are starting with the extracted segments of railroads,

6 http://www.geonames.org/export/reverse-geocoding.html
7 https://wiki.openstreetmap.org/wiki/API

http://www.geonames.org/export/reverse-geocoding.html
https://wiki.openstreetmap.org/wiki/API
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so we know the feature type we are searching for. Each input segment s here
is an individual node in graph G from section 2.3. We first generate a global
bounding box for segment s and execute a reverse-geocoding API call to locate
instances of type T on the external knowledge base, as described in lines 1-2.
Some of these instances do not share any geometry parts with our inspected
segment. Thus, we randomly sample a small number (N=30) of coordinate pairs
(Points), from those composing the segment s, as seen in lines 3-5, to gain more
confidence in the detected instances. Finally, we reduce the list by filtering out
the candidates that have a single appearance (high confidence that it is not part
of the segment but is found in the bounding box). These resulting instances
are used in later stages to enrich the knowledge graph we are constructing with
additional semantics.

Data: segment s, number of samples N , feature type T
Result: list L of instances on LinkedGeoData composing our input segment s

1 Bs = bounding box wrapping s;
2 L = reverse-geocoding(Bs, T ); // returns LinkedGeoData instances of T in Bs

for 1...N do
3 e = randomly sample a Point in segment s;
4 E = reverse-geocoding(e, T );
5 L.add(E);

6 end
7 filter out instances with a single appearance in L;
8 return L;

Algorithm 2: The “geo-linking” algorithm

2.5 Semantic Model

In order to provide a representation with useful semantic meaning and universal
conventions, we defined a semantic model that builds on GeoSPARQL.8 The
OGC GeoSPARQL standard defines a vocabulary for representing geospatial
data on the web and is designed to accommodate systems based on qualitative
spatial reasoning and systems based on quantitative spatial computations.

Our approach towards a robust semantic model was motivated by the Open-
StreetMap data model, where each feature is described as one or more geometries
with attached attribute data. In OpenStreetMap, relations are used to orga-
nize multiple nodes or ways into a larger whole. For example, an instance of a
bus route running through three different ways would be defined as a relation.

In GeoSPARQL, the class type geo:Feature represents the top-level fea-
ture type. It is a superclass of all feature types. In our model, each instance of
this class represents a single segment (element) extracted from the original vec-
tor data. It is possible to compose different collections of segments representing
the specified feature in some time extent using this instance and a property of
type geo:sfWithin or geo:sfContains to denote a decomposition to smaller
elements. The use of such properties enables application-specific queries with a

8 https://www.opengeospatial.org/standards/geosparql

https://www.opengeospatial.org/standards/geosparql
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backward-chaining spatial “reasoner” to transform the query into a geometry-
based query that can be evaluated with computational geometry. Additionally,
we use the property geo:sfOverlaps with subjects that are instances from the
LinkedGeoData knowledge base in order to employ the web as a medium for
data and spatial information integration following linked data principles. Fur-
thermore, each instance has properties of type dcterms:date, to denote the time
extent of the segment, and dcterms:created, to denote the time in which this
segment was generated to record provenance data.

Fig. 6. Semantic model for linked maps

Complex geometries are not
human-readable as they consist
of hundreds or thousands of co-
ordinate pairs. Therefore, we use
dereferenceable URIs to represent
the geometric objects instead. Us-
ing a named node in this capac-
ity means that each geometric ob-
ject has its own URI as opposed
to the common blank-node ap-
proach often used with linked ge-
ometric objects. Thus, each seg-
ment instance holds a property
of type geo:hasGeometry with a
subject that is an instance of the
class geo:Geometry. This prop-
erty refers to the spatial represen-
tation of a given feature. The class geo:Geometry represents the top-level ge-
ometry type and is a superclass of all geometry types.

In order to describe the geometries in a compact and human-readable way
we use the WKT format for further pre-processing. The geo:asWKT property is
defined to link a geometry with its WKT serialization and enable downstream
applications to use SPARQL graph patterns. The semantic model we described
above is shown in Figure 6.

2.6 Incremental Linked Data

Following the data extraction and acquisition tasks described in the previous
section, we can now produce a structured standard ontologized output in a form
of a knowledge graph that can be easily interpreted by humans and machines,
as linked data.

This hierarchical structure of our directed acyclic graph G and its meta-
data management allows us to avoid an update across all the existing published
geographic vector data as linked data and instead handle the computations in-
crementally once a new map edition of the feature is introduced.

The approach we present is complete and follows the principles of Linked
Open Data by:
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– Generating URIs as names for things, without the need to modify any of the
previously published URIs once further vector data from the same region is
available and processed

– Maintaining existing relations (predicates) between instances (additional re-
lations may be added, but they do not break older ones)

– Generating data as a machine-readable structured data

– Using standard namespaces and semantics (e.g., GeoSPARQL)

– Linking to additional resources in the web of Linked Open Data

2.7 Querying

1 SELECT ?f ?wkt
2 WHERE {
3 ?f a geo:Feature ;
4 geo:hasGeometry [ geo:asWKT ?wkt ] .
5 FILTER NOT EXISTS { ?f geo:sfContains _:_ } }

Fig. 7. Our SPARQL query “skeleton”

The semantic model we presented
in section 2.5 and its structure
provide a robust solution enabling
a coherent query mechanism to al-
low a user-friendly and efficient
interaction with the data.

In order to clarify the query
construction idea, we describe the elements that are needed for a general query
“skeleton” from which we can establish more complicated queries to achieve
different outcomes as required. Figure 7 shows a query which retrieves all the
leaf node segments (i.e., the “skeleton” query). As shown in the figure, we first
denote that we are interested in a geo:Feature that has a geometry in WKT

format which gets stored in the variable ?wkt as shown in lines 3-4 (the variable
we visualize in Figure 14). Line 5 restricts the queried segments (geo:Features)
to leaf nodes only (in graph G). This is done by discarding all the nodes that
hold a predicate of type geo:sfContains, which means that we retrieve only
the nodes that are the “building blocks”.

This is important due to the incremental nature (and the way graph G
“grows”): as we mentioned previously, every time we add an additional map
edition of the feature, we decompose the existing leaf segments (smallest build-
ing blocks) to a new layer of leaf segments (newer and smaller building blocks, if
subject to decomposition) and its metadata migrates to the lowest level of seg-
ment leaves. This property makes our solution robust and suggests an efficient
way of querying, avoiding the need to “climb up” the graph for more complicated
(“composed”) segments.

If, for example, we are interested to see the full version of the segment from
a specific time, we can add the clause {?f dcterms:date <...> .} inside the
WHERE block (lines 2-6). If we are interested to see the changes from a different
time, we can add an additional clause {MINUS { ?f dcterms:date <...> .

}} as well. The syntax and structure of the query allows an easy adaptation
for additional tasks such as finding the distinct segment parts from a specific
time or finding the segment parts that are shared over three, four or even more
points in time or map editions. The nature of our knowledge graph provides an
intuitive approach towards writing simple and complex queries.



Building Linked Spatio-Temporal Data from Vectorized Historical Maps 11

3 Evaluation

We tested two datasets of vector railroad data (the inspected feature) that were
extracted from the USGS historical topographic map archives,910 each of which
covers a different region and is available for different time periods.

In this section, we present the results, measures and outcomes of our pipeline
when executed on railroad data from a collection of historical maps of a region
in Bray, California from the years 1950, 1954, 1958, 1962, 1984, 1988, and 2001
(shown in Figure 8) and from a region in Louisville, Colorado from the years 1942,
1950, 1957 and 1965. Our primary goal is to show that our proposal provides
a complete, robust, tractable, and efficient solution for the production of linked
data from vectorized historical maps.

Fig. 8. Historical maps in Bray, California from 1950, 1954, 1958, 1962, 1984, 1988 and
2001 (left to right, respectively)

3.1 Evaluation on the Feature Segmentation Process

In order to evaluate the performance of this task, we look into the runtime
and the number of generated nodes (in graph G) for each region. The number
of vector lines in the segment geometry (column ‘# vecs’), resulting runtimes
(column ‘Runtime’, measured in seconds) and total number of nodes following
each sub-step of an addition of another map edition (column ‘# nodes’) are
depicted in Tables 1 and 2 for each region.

Table 1. Segmentation Statistics
for Bray

Year # vecs Runtime (s) # nodes

1954 2382 <1 1
1962 2322 36 5
1988 11134 1047 11
1984 11868 581 24
1950 11076 1332 43
2001 497 145 57
1958 1860 222 85

As seen in Tables 1 and 2, the railroad
segments extracted from these maps vary in
terms of “quality”. That is, they have a differ-
ent number of vector lines that describe the
railroads and each one has a different areal
coverage. This is caused by the vector extrac-
tion process (see [5]) and is not within the
scope of this paper. We also acknowledge that
the quality and scale of the original images
used for the extraction affects these parame-
ters but we do not focus on such issues. We
treat these values and attributes as a ground
truth for our process.

9 https://viewer.nationalmap.gov
10 http://historicalmaps.arcgis.com/usgs/

https://viewer.nationalmap.gov
http://historicalmaps.arcgis.com/usgs/
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Table 2. Segmentation Statistics
for Louisville
Year # vecs Runtime (s) # nodes

1965 838 <1 1
1950 418 8 5
1942 513 5 8
1957 353 4 10

First, we notice that the growth of the
number of nodes in graph G is reasonable due
to the way the railroad network changes in
practice. Further, the runtime of each sub-
step is also reasonable and tractable. As ex-
pected, the first two map editions (for both
areas) generate results within less than a
minute, requiring at most three computa-
tions: one geometry intersection between two
elements and two additional subtractions: a local and a global one (as explained
in section 2.3). The following runtimes show that our computation cost is not
exponential in practice. By inspecting Tables 1 and 2 we observe that the seg-
mentation runtime somewhat depends on two factors: the number of vectors in
the geometries and the number of nodes that exist in the graph. The more ge-
ometry elements we have and the more geometries exist, the more operations we
need to run.

These results are not surprising because “leaves” in the graph will only be
partitioned in case it is “required”, that is, they will be partitioned to smaller
unique parts to represent the different segments they need to compose. With the
addition of map editions, we do not necessarily add unique parts since changes
do not occur between all map editions. This shows that the data processing is not
necessarily becoming more complex in terms of space and time, thus, providing
a solution that is feasible and systematically tractable.

3.2 Evaluation on Linking to LinkedGeoData

In the process of linking our data to LinkedGeoData, we are interested in the
evaluation of the running time and correctness (precision and recall) of this task.

The running time is linearly dependent on the the number of nodes in graph
G, the number of samples using the OpenStreetMaps API, and the availability
of the API. The API response time averages 2 seconds for each sample. The
execution time for the set of maps from the region in Bray took approximately an
hour (85 nodes) and only a few minutes for Louisville (10 nodes). This provides a
feasible solution to a process that runs only once for a collection of map editions.

Due to the unsupervised characteristic of the linking task, we had to manually
inspect and label the sets of instances found in each bounding box that we
query for each segment. The measure we present here is in terms of coverage.
It is the number of instances we detected out of the number of instances that
are available on the external knowledge base and which make up the inspected
railroad segment. Nonetheless, in terms of detecting which railroad it is (label),
we are able to achieve 100% accuracy (by taking a majority vote on the labels
of instances we queried).

As an example, let us observe the instances in the LinkedGeoData knowledge
base that are linked to a segment that holds railroad lines in the map edition
from 1950 in the data from Bray, as shown in Figure 9. All of the Linked-
GeoData instances linked to this segment show an rdf:type of type lgdo:-
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AbandonedRailway, as seen in red in Figure 10. This shows our ability to enrich
and link our graph to the web of linked data.

<http://linkedmaps.isi.edu/69> a geo:Feature ;
dcterms:created "2019-12-10T15:23:23"^^xsd:dateTime ;
dcterms:date "1950-01-01T00:00:00"^^xsd:dateTime ;
geo:hasGeometry <http://linkedmaps.isi.edu/69_sc_m_2091b7b4c0> ;
geo:sfOverlaps <http://linkedgeodata.org/triplify/way177559134>,

<http://linkedgeodata.org/triplify/way177559138> ;
geo:sfWithin <http://linkedmaps.isi.edu/41> .

Fig. 9. A segment representation in RDF

We have set up a
baseline for compar-
ison with our “geo-
linking” method. The
baseline approach re-
turns the set of all
instances found in
the bounding box.
This is the list of candidates we generate in the first step of our method, without
the additional sampling and filtering steps we have described in section 2.4.

Fig. 10. Screenshot of an instance at LinkedGeo-
Data knowledge base

The precision, recall and F1
scores of each method over each
dataset are shown in Table 3.
The first row (BRA-baseline)
provides the baseline’s results ap-
plied on the Bray dataset. The
second row (BRA) shows the re-
sults of our method when ap-
plied on the Bray dataset. The
third (LOU-baseline) and fourth
rows (LOU) show the results of
the baseline method and our
method, respectively, applied on
the Louisville dataset. Due to the
different geometries, areal cover-
age and available data in the ex-
ternal knowledge base for each
region, our measure shows different scores for each dataset. However, our method
achieves much higher F1 scores than the baseline (0.774 and 0.909 compared to
0.323 and 0.625 respectively) and achieves an acceptable score for this task.

Table 3. “Geo-linking” Results

Precision Recall F1

BRA-baseline 0.193 1.000 0.323

BRA 0.800 0.750 0.774

LOU-baseline 0.455 1.000 0.625

LOU 0.833 1.000 0.909

3.3 Evaluation on Querying the Data

We execute several query examples over the knowledge graph we constructed in
order to measure our model in terms of query time, validity, and effectiveness.
We had a total of 914 triples for the Bray region dataset and 96 triples for
Louisville.
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SELECT ?f ?wkt WHERE {
?f a geo:Feature ;

geo:hasGeometry [ geo:asWKT ?wkt ] ;
dcterms:date "1962-01-01T00:00:00"^^xsd:dateTime ;
dcterms:date "2001-01-01T00:00:00"^^xsd:dateTime .

FILTER NOT EXISTS { ?f geo:sfContains _:_ } }

Fig. 11. SPARQL query generating similar railroad
segments in both 1962 and 2001

The generated RDF triples
would be appropriate to use
with any Triplestore. We
hosted our triples in Apache
Jena.11 Jena is relatively
lightweight, easy to use, and
provides a programmatic en-
vironment. Each SPARQL query response was visualized using the Google Maps
API.

In the first type of query we want to identify the parts of the railroad that
remain unchanged in two different map editions (different time periods) for each
region (i.e., Figure 11). Table 4 shows the query-time results in the row labelled
SIM-BRA for the region in Bray and by SIM-LOU for the region in Louisville. We
executed a hundred identical queries for each area across different time extents
to measure the robustness of this type of query.

We repeated the process for a second type of query to identify the parts of
the railroad that were removed or abandoned between two different map editions
for each region (i.e., Figure 12). DIFF-BRA is the result for Bray and DIFF-LOU

for Louisville.
SELECT ?f ?wkt WHERE {

?f a geo:Feature ;
geo:hasGeometry [ geo:asWKT ?wkt ] ;
dcterms:date "1962-01-01T00:00:00"^^xsd:dateTime .

FILTER NOT EXISTS { ?f geo:sfContains _:_ }
MINUS { ?f dcterms:date "2001-01-01T00:00:00"^^xsd:dateTime . } }

Fig. 12. SPARQL query generating railroad segments present
in 1962 but not in 2001

The third type
of query retrieves
the parts of the rail-
road that are unique
to a specific edition
of the map (i.e., Fig-
ure 13). UNIQ-BRA is
the result for Bray and UNIQ-LOU for Louisville.

The execution times (average, minimum and maximum) are shown in Table
4. We notice that the query times are all in the range of 8-28(ms) and do not
seem to change significantly with respect to the number of map editions we
process or the complexity of the query we compose. This is based on the fact
that the data from Bray was constructed from 7 map editions compared to the
data from Louisville, which was constructed from 4 map editions.

SELECT ?f ?wkt WHERE {
?f a geo:Feature ;

geo:hasGeometry [ geo:asWKT ?wkt ] ;
dcterms:date "1958-01-01T00:00:00"^^xsd:dateTime .

FILTER NOT EXISTS { ?f geo:sfContains _:_ }
?f dcterms:date ?date . }

GROUP BY ?f ?wkt
HAVING (COUNT(DISTINCT ?date) = 1)

Fig. 13. SPARQL query generating unique railroad
parts that are present only in 1958

In order to evaluate the
validity of our graph we ob-
serve the visualized results
of the query in Figure 11,
which are shown in Figure
14a. This figure shows in red
the unchanged segments be-
tween the years 1962 and
2001 for Bray. We notice that
the geometries we retrieve do
match what we observe in the original shapefiles (the line marked in black over

11 https://jena.apache.org/

https://jena.apache.org/
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the two maps represents the current railway, which has not changed since 2001).
The results of the query in Figure 12 are shown in Figure 14b. This figure shows
in blue the parts of the railroad that were abandoned between 1962 to 2001.

Table 4. Query Time Statistics (in
milliseconds)

avg min max

SIM-BRA 12 10 18
SIM-LOU 11 9 20

DIFF-BRA 10 8 20
DIFF-LOU 10 9 14

UNIQ-BRA 14 8 28
UNIQ-LOU 15 9 17

The query results above establish high
confidence in our model, showing that we can
easily and effectively answer complex queries
in a robust manner. Overall, we demon-
strated that our approach and the proposed
pipeline can be effectively used to automat-
ically construct linked data from geospatial
information.

(a) The parts of the railroad
that are similar in 1962 and
2001, marked in red

(b) The parts of the rail-
road that are present in 1962
but are not present in 2001,
marked in blue

Fig. 14. Examples of railroad system changes over time

4 Related Work

Much work has been done on mapping vector data into RDF graphs. Kyzi-
rakos et al. [6] developed a semi-automated tool for transforming geospatial
data from their original formats into RDF using R2RML mapping. Usery et
al. [12] presented a method for converting point and vector data to RDF for
supporting query and analysis of geographic data. Our work differs by building
linked geospatial data with a meaningful semantic relations between vector seg-
ments across map editions of the same region and thus for different points in
time whereas prior approaches focus on the publication of data from raw files or
relational databases.

Existing work on geographical data conflation [7,9] focuses on reconciling
different sources for improving data accuracy and in combining incompatible
geospatial data. This line of work does not consider the semantics and nature of
linked data as we address it. Their work can be used within our framework to
strengthen our geometric entity-matching tasks.
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Bernard et al. [2] present a semantic matching algorithm for automatically
detecting, describing and publishing descriptions of changes occurring in region
partitions, and their geometries, in the linked open data web. Their work focuses
on Territorial Statistical Nomenclatures (TSNs) which are used for the collec-
tion of regional statistics. Their semantic matching algorithm is bounded to an
ontology where geometric changes are described either as deformed, expanded
or contracted with no regard to composition or decomposition of geometries as
we do. Our approach goes further since it provides a richer semantic capability,
decomposition of geometries and data interlinking.

Prudhomme et al. [8] present an automatic approach for geospatial data
integration in the web. Although this line of work tackles the problem of entity
resolution for geospatial data, it is difficult to compare our approach to theirs
because they tackle the task of ontology-matching (by maximizing semantic
information from files using natural language processing) while ours addresses
a complementary problem to that theirs. Our primary goal is the completeness
and tractability of building the linked geodata, using semantics to provide a
model that is linked to other online sources such as LinkedGeoData.

5 Discussion and Future Work

With the increasing availability of digitized geospatial data from historical map
archives, better techniques are required to enable end-users and non-experts to
easily understand and analyze geographic information across time and space.
Existing techniques rely on human interaction and expert domain knowledge. In
this paper, we addressed this issue and presented an unsupervised, effective ap-
proach to integrate, relate and interlink geospatial data from digitized resources
and publish it as semantic-rich, structured linked data that follows the Linked
Open Data principles.

The evaluation we presented in section 3 shows that our approach is feasible
and effective in terms of processing time, completeness and robustness. The
segmentation process runs only once for newly added resource, and does not
require re-generation of “old” data since our approach is incremental. In case a
new map edition emerges for the same region, we only need to process the newly
added segments. Thus, data that has been previously published will continue to
exist with a proper URI and will be preserved over time.

In a scenario that includes contemporary maps that change very quickly,
we expect our method to require longer computation time, but would still be
tractable with respect to the changes happening in the map geometries. As we
mentioned in section 2.3, the breakdown of segments depends on the complexity
of the actual changes in the original topographic map. Further, the quality and
level of detail of the original vector data play a significant role in the final RDF
model as we mentioned in section 3.1. In our ongoing work on this topic, we are
looking into techniques to normalize and denoise the original vector data for the
purpose of higher quality output.
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Our approach has several limitations, one of them is in a form of a hyper-
parameter that governs the buffer size we use in the process of the partitioning
of segments to smaller parts. We currently set this parameter manually but we
believe such parameter can be learned from the data or estimated using some
heuristics. Another limitation in the system is the usage of a single external
knowledge base. We will address this issue by expanding the ability to utilize
additional knowledge bases to enrich our linked data with more semantics from
Linked Open Vocabularies [13].

Although we only evaluated railroad data, it can be easily extended for high-
ways, wetlands, forests and additional natural or man-made features with mi-
nor adjustments of their geometries and the filtering term that is used in the
geocoding API (e.g., railroads). Since the topological relations of the geometries
are expressed (via GeoSPARQL) and computed (via PostGIS) according to the
DE-9IM model [10], a 2D model, it allows us to apply it over polygon geometries
in addition to line geometries. For continuous 2D surfaces, such as wetlands and
forests, that are expressed in polygon geometries, we can handle their boundaries
similarly. We already started exploring this line of work.

In future work, we also plan to investigate the possibility of using multiple
machines for faster processing. This is possible since there are computations in
the segment-partitioning algorithm that are independent of each other and can
be executed in parallel in the same iteration over a single map edition (lines 7
and 9 for different ks in Algorithm 1). This will enable a faster processing time
and strengthen the effectiveness of our solution.

Resources The source code, original datasets and the resulting RDF, can be
found here: https://github.com/usc-isi-i2/linked-maps.
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