
GEval: a Modular and Extensible Evaluation
Framework for Graph Embedding Techniques

Maria Angela Pellegrino1(�), Abdulrahman Altabba2, Martina Garofalo1,
Petar Ristoski3, and Michael Cochez4[0000−0001−5726−4638]

1 Department of Computer Science, University of Salerno, Italy
mapellegrino@unisa.it, margar1994@gmail.com

2 Information Systems and Databases, RWTH Aachen University, Germany
abdulrahman.altabba@rwth-aachen.de

3 IBM Research Almaden, San Jose, CA, USA petar.ristoski@ibm.com
4 VU Amsterdam m.cochez@vu.nl

Resource type Software Framework
GitHub link https://github.com/mariaangelapellegrino/Evaluation-Framework

Permanent URL https://doi.org/10.5281/zenodo.3715267

Abstract. While RDF data are graph shaped by nature, most tradi-
tional Machine Learning (ML) algorithms expect data in a vector form.
To transform graph elements to vectors, several graph embedding ap-
proaches have been proposed. Comparing these approaches is interesting
for 1) developers of new embedding techniques to verify in which cases
their proposal outperforms the state-of-art and 2) consumers of these
techniques in choosing the best approach according to the task(s) the
vectors will be used for. The comparison could be delayed (and made
difficult) by the choice of tasks, the design of the evaluation, the se-
lection of models, parameters, and needed datasets. We propose GEval,
an evaluation framework to simplify the evaluation and the compari-
son of graph embedding techniques. The covered tasks range from ML
tasks (Classification, Regression, Clustering), semantic tasks (entity re-
latedness, document similarity) to semantic analogies. However, GEval
is designed to be (easily) extensible. In this article, we will describe the
design and development of the proposed framework by detailing its over-
all structure, the already implemented tasks, and how to extend it. In
conclusion, to demonstrate its operating approach, we consider the pa-
rameter tuning of the KGloVe algorithm as a use case.

Keywords: Evaluation Framework, Knowledge Graph Embedding, Ma-
chine Learning, Semantic Tasks

1 Introduction

A graph embedding technique takes an RDF graph as its input and creates a low-
dimensional feature vector representation of nodes and edges of the graph. For-
mally, a graph embedding technique aims to learn a function f : G(V,E) → Rd

which is a mapping from the graph G(V,E), where V is the set of vertices and E
is the set of edges, to a set of numerical embeddings for the vertices and edges,

https://github.com/mariaangelapellegrino/Evaluation-Framework
https://doi.org/10.5281/zenodo.3715267

2 Pellegrino et al.

where d is the dimension of the embedding. The purpose of such a graph em-
bedding technique is to represent each node and edge in a graph (or a subset of
them) as a low-dimensional vector; often while preserving semantic properties
(e.g., keeping similar entities close together) and/or topological features. If only
nodes are embedded, it is called node embedding.

A desirable property for the obtained vectors is that they would be task-
independent, meaning that they can be reused for other applications as they were
created for. Therefore, it is useful to have an idea of how the vectors perform on
different tasks to broaden the insight into the information the embedding algo-
rithm is able to preserve. It is also important to know whether the vectors show
very good performance on a given task while their performance degrades signifi-
cantly on others. It is important to bear in mind that the extrinsic evaluation is
not the only (and probably it is not the best) way to elect the best embedding
approach. However, this kind of evaluation is extremely useful to choose the best
set of vectors according to the tasks they will be used for. Besides the evaluation
and comparison, a systematic evaluation is also useful in parameter tuning. In
fact, many embedding algorithms have various parameters, which are difficult to
set. Therefore, in this scenario, it is interesting to compare different versions of
the same algorithm and check how the parameters affect extrinsic evaluations.

By considering extrinsic evaluation and comparison, one of the first aspects to
take into account is the choice of the tasks. Systematic comparative evaluations
of different approaches are scarce; approaches are rather evaluated on a handful
of often project-specific data sets. Usually, they do not show how the algorithm
performs on large and less regular graphs, such as DBpedia5 or Wikidata6.

To simplify the evaluation phase while providing a wider comparison, we
present the design and open-source implementation of GEval (Graph Embed-
dings Evaluation), a software evaluation framework for knowledge graph (KG)
embedding techniques. The provided tasks range from machine learning (ML)
(classification, regression, and clustering) and semantic tasks (entity relatedness
and document similarity) to semantic analogies. Furthermore, the framework is
designed to be extended with additional tasks. It is useful both for embedding
algorithm developers and users. On one side, when a new embedding algorithm
is defined, there is the need to evaluate it upon tasks it was created for. On the
other side, users can be interested in performing particular tests and choosing the
embedding algorithm that performs best for their application. Our goal is to ad-
dress both situations providing a ready-to-use framework that can be customized
and easily extended. This work is a continuation on our earlier work [13].

This paper is structured as follows: in Section 2, we present related work;
in Section 3, we describe our evaluation framework, detailing the implemented
tasks in Section 4; in Section 5, we present a practical use case, i.e., how to
exploit the proposed framework in parameter tuning; then, we conclude with
considerations and some final observation.

5 https://dbpedia.org/
6 https://www.wikidata.org

https://dbpedia.org/
https://www.wikidata.org

GEval: an Evaluation Framework for Graph Embedding Techniques 3

2 Related work

The easiest way to categorize software evaluation frameworks is related to the
provided tasks. Moreover, frameworks can be distinguished according to the
expected input. In the case of embedding algorithms, an evaluation framework
can take as input the model and train it before starting the evaluation. In the
alternative, it could expect pre-computed vectors. The input format can influence
the type of covered tasks. For example, for a fair comparison in link prediction, it
is important to know the input graph used to train the model. Only by bounding
the training set, it is possible to fairly test unknown edges and verify the ability of
the embedding algorithm to forecast only positive edges. In this section, we will
focus on frameworks to evaluate graph embedding approaches by pointing out
the covered tasks. In Table 1, we will list frameworks by reporting the publication
year, the covered tasks, and if they expect the model or the pre-trained vectors.

Table 1: For each evaluation framework, we report 1) the publication year, 2) the
available tasks, and 3) the input format. Task label : Clas for Classification, Clu
for Clustering, DocSim for Document Similarity, EntRel for Entity Relatedness,
LP for Link Prediction, Net Comp for Network Compression, Reg for Regression,
SemAn for Semantic Analogies, Vis for Visualization.

Year Tasks Embedding
technique

Bonner et al. [3] 2017 Topological structure Model
GEM [7] 2018 Clas, Clu, LP, Net Comp, Vis Model
Rulinda et al. [16] 2018 Clu, LP, Vis Model
OpenNE 2019 Clas, Vis Model
EvalNE [11] 2019 LP Model
AYNEC [2] 2019 LP -
Bogumil et al. [9] 2019 Clu Model

GEval 2019 Clas, Clu, DocSim, EntRel, Reg, SemAn Vectors

Goyal and Ferrara [7] released an open-source Python library, GEM (Graph
Embedding Methods), which provides a unified interface to train many state-of-
the-art embedding techniques on the Zachary’s Karate graph and test them on
network compression, visualization, clustering, link prediction, and node clas-
sification. GEM modular implementation should help users to introduce new
datasets. This library is bounded to the embedding methods provided by the
authors, while the introduction of new embedding approaches requires compli-
ance with an interface defined within the library. It focuses more on the imple-
mentation of embedding approaches than on the effective evaluation workflow.

Bonner et al. [3] provide a framework to assess the effectiveness of graph
embeddings approaches in capturing detailed topological structure, mainly at
the vertex level. For instance, they hypothesize that a good graph embedding
should be able to preserve the vertex centrality. The evaluation is based on
empirical and synthetic datasets. Also this task needs to be aware of the graph

4 Pellegrino et al.

used during the training phase of the model to verify the presence of topological
structure in the vectors. The authors do not state if further tasks can be added.

Rulinda et al. [16] implement a collection of graph embedding techniques and,
once trained, they evaluate the resulting vectors on clustering, link prediction,
and visualization. The framework focuses only on uniform graphs.

Even if OpenNE7 is an open-source package to train and test graph em-
bedding techniques on node classification and network visualization, it is more
focused on the generation phase than on the evaluation aspect.

EvalNE [11] focuses on the Link Prediction task. It starts from an incomplete
training graph along with a (more) complete version of the graph to test and ver-
ify the prediction power. EvalNE interprets the link prediction task as a binary
classification task and it can be extended by adding other binary classifiers.

Also AYNEC [2] focuses on the link prediction task. It provides some incom-
plete graphs as a training set. The user, on his/her behalf, can train a graph
embedding algorithm on these datasets and run the link prediction task on the
testing datasets. AYNEC takes as input the forecast edges and evaluate them
by considering the complete graph. It provides all the useful phases to evaluate
the link prediction task, but the link prediction step is charged to the user.

Bogumil et al. [9] focus on the clustering task and they define a divergence
score that can be used to distinguish good and bad embeddings. They test a
pool of embeddings of synthetic and real datasets. From their work it appears
that they plan to extend the framework to hypergraphs. They do not state how
or whether the framework can be used and extended for other tasks.

We propose GEval, an evaluation framework that combines both ML and se-
mantic tasks. The advantage of considering also semantic tasks in the evaluation
is due to the recent trend to extend neural embedding techniques, tradition-
ally introduced only for natural language word sequences, also to KGs. Besides
the wider diffusion of this kind of embedding techniques, to the best of our
knowledge, they are not incorporated in a KG evaluation framework. Our tool
is designed to be modular and extensible. It takes as input already pre-trained
vectors without constraint on the way these vectors are produced.

3 GEval: Evaluation framework for Graph Embeddings

GEval is a software framework to perform evaluation and comparison of graph
embedding techniques. It takes as input a file containing pre-computed vectors.
More in detail, the input file must provide pairs of an embedded node (repre-
sented by its IRI) and the related vector. For each task, ground truth is modeled
as a gold standard, which will be further referred to as gold standard datasets.
They contain the tested entities and its ground truth. In Fig. 1, there is a di-
agrammatic representation of the involved parts in the framework and their
interactions. The starting point is the Evaluation Manager which is the orches-
trator of the whole evaluation and it is in charge of 1) verifying the correctness

7 https://github.com/thunlp/OpenNE

https://github.com/thunlp/OpenNE

GEval: an Evaluation Framework for Graph Embedding Techniques 5

of the parameters set by the user, 2) instantiating the correct data manager
according to the data format provided by the user, 3) determining which task(s)
the user asked for, and 4) managing the storage of the results.

Fig. 1: The diagram represents the components of the framework. The blue boxes
represent abstract classes, while the white boxes represent concrete classes. If A
<<extends>> B, A is the concrete class which extends and makes the abstract
behaviour of A concrete. If A <<instantiates>> B, A creates an instance of B.
If A <<uses>> B, A is dependent on B.

Running details. GEval can be run from the command line and by APIs. As
stressed before, most of the actions performed by the evaluator strictly depend
on the user settings and preferences. Users can customize the evaluation settings
by: i) specifying them on the command line (useful when only a few settings
must be specified and the user desires to use the default value for most of the
parameters); ii) organizing them in an XML file (especially useful when there is
the need to define most of the parameters); iii) passing them to a function that
starts the evaluation. In the example folder of the project on GitHub, there are
examples for the different ways to provide the parameters. The parameters are:

vectors file path of the file where the embedded vectors are stored;
vector file format data format of the input file;
vectors size length of the embedded vectors;
tasks list of the tasks to execute;
parallel task execution mode;
debugging mode True to run the tasks by reporting all the information col-

lected during the run, False otherwise;
similarity metric metric used to compute the distance among vectors. When

an embedding technique is created, there is often also a specific distance
metric which makes sense to measure similarity in the created space. This
measure is a proxy for the similarity between the entities in the graph;

analogy function function to compute the analogy among vectors. By specify-
ing None, the default function is used. To customize it, the programmatically
provided function handler must take 3 parameters and return a number.

6 Pellegrino et al.

de f d e f a u l t a n a l o g y f u n c t i o n (a , b , c){ re turn b − a + c}

top k it is used to look for the right answer among the top k values. The vector
returned by the analogy function (that will be referred to as predicted vector)
gets compared with the k most similar ones. If the predicted vector is among
the k most similar ones, the answer is considered correct;

compare with list of the runs to compare the results with. Each run is iden-
tified uniquely and the user can refer to specific runs to compare with by
using these IDs. It is auto-generated by the framework and it corresponds to
vectorFilename vectorSize similarityMetric topK and a progressive number
to disambiguate runs with the same parameters.

In Table 2, we will detail for each parameter the default value, the accepted
options, if the parameter is mandatory, and which component uses it.

Table 2: The table reports details for each parameter: the parameter name, the
default value, the accepted options, if it is mandatory, and which component/-
task uses it. The * means that the parameter is used by all the tasks.
Parameter Default Options Mandatory Used by

vectors file X *

vector file format TXT TXT, HDF5 data manager

vectors size 200 numeric value data manager

tasks all Class, Reg, Clu, evaluation manager
EntRel, DocSim, SemAn

parallel False boolean evaluation manager

debugging mode False boolean *

similarity metric cosine Sklearn affinity metrics8 Clu, DocSim

analogy function None handler to function semantic analogy

top k 2 numeric value SemAn

compare with all list of run IDs evaluation manager

Data management. The input file can be provided either as a plain text (also
called TXT) file or as a HDF5. In particular, the TXT file must be a white-space
separated value file with a line for each embedded entity. Each row must contain
the IRI of the embedded entity and its vector representation. Since most of the
tasks implemented in the evaluation framework need to intersect (inner join) the
data set(s) used as gold standard and the input file, we also work with an indexed
file format to speed up the merging phase. Indeed, the direct access to the entities
of interest gives us the chance to save time during the merging step and also to
save space since we do not read the complete vectors file into the memory. Among
the available formats, we decided to work with HDF59. The HDF5 vectors file
must provide one group called vectors. In this group there must be a dataset for
each entity with the base32 encoding of the entity name as the dataset name
and the embedded vector as its value. Depending on the file format, the data
manager decides to read the whole content or not. For instance, the TXT file

9 https://www.hdfgroup.org/solutions/hdf5/

https://www.hdfgroup.org/solutions/hdf5/

GEval: an Evaluation Framework for Graph Embedding Techniques 7

will be completely read. HDF5, instead, provides an immediate access to vectors
of interest. Each data manager has to i) read the gold standard datasets, ii) read
the input file and iii) determine how to merge each gold standard dataset and
the input file. The behaviour of the data manager is modelled by the abstract

data manager, implemented by a concrete data manager based on the input file
format and it refined by task data managers.

Task management. Once data have been accessed, the task(s) can be run. Each
task is modelled as a pair of task manager and model. The task manager is in
charge of 1) merging the input file and each gold standard file (if more than
one is provided) (by exploiting the data manager), 2) instantiating and training
a model for each configuration to test, and 3) collecting and storing results
computed by the model. Therefore, the framework is in charge of retrieving
entities of interest, i.e., entities listed in gold standard datasets, and the related
vectors. Only the intersection of entities provided by the input file and the ones
required by gold standard datasets will be considered into the evaluation. Each
task can decide if the missing entities (i.e., the entities required into the gold
standard file, but absent into the input file) will affect the final result of the
task or not. According to the user preferences, tasks can be run in sequential
or in parallel. The parallelization is trivially handled: by asking for the parallel
execution, a new process is created for each task and it is immediately run. Once
results are returned, they are collected and stored by the Evaluation Manager.

Out-of-the-box tasks and extension points. The provided tasks range from ML
tasks (Classification, Regression, Clustering), semantic tasks (entity relatedness
and document similarity) to semantic analogies. Each task is kept separate, by
satisfying the modularity requirement. By the usage of abstraction, it is easy
to add new tasks and/or data manager. The abstract data manager defines
the interface of a data manager, while abstract task manager and abstract

model define the interface of a new task. Extending the framework with new
data formats and/or new tasks is as simple as creating a class implementing
these interfaces. To further enrich an already implemented task, it is easy to
retrieve the exact point to modify since each task is limited to its task manager
and model. Moreover, to extend the evaluation also to edges, it is enough to
create gold standard dataset containing edges and related ground truth.

Results storage. For each task and for each file used as gold standard, GEval
will create i) an output file that contains a reference to the file used as gold
standard and all the information related to evaluation metric(s) provided by each
task, ii) a file containing all the missing entities, iii) a log file reporting extra
information, occurred problems, and execution time, and iv) information related
to the comparison with previous runs. In particular, about the comparison, it
reports the values effectively considered in the comparison and the ranking of
the current run upon the other ones. The results of each run are stored in the
directory results/result <starting time of the execution> generated by
the evaluation manager in the local path.

8 Pellegrino et al.

4 Out of the box Available Tasks

The available tasks are Classification, Regression and Clustering that belong
to the ML field, and Entity Relatedness, Document Similarity and Semantic
Analogies, more related to the semantic field. Each task is implemented as a
concrete task manager that implements functionalities modelled by the Abstract
Task Manager. Each task follows the same workflow:

1. the task manager asks data manager to merge each gold standard dataset and
the input file and keeps track of both the retrieved vectors and the missing
entities, i.e., entities required by the gold standard dataset, but absent in
the input file;

2. a model for each configuration is instantiated and trained;
3. the missing entities are managed: it is up to the task to decide if they should

affect the final result or they can be simply ignored;
4. the scores are calculated and stored.

We will separately analyse each task, by detailing the gold standard datasets,
the configuration of the model(s), and the computed evaluation metrics.

4.1 Classification

Table 3 contains details related to the gold standard datasets used for the Classi-
fication task, the trained models and its parameter(s) (if any), and the evaluated
metric. The gold standard datasets have been designed for use in quantitative
performance testing and systematic comparisons of approaches. They can be
freely downloaded from the author’s website.10 The missing entities are simply
ignored. The results are calculated using stratified 10-fold cross-validation.

Table 3: Details of the Classification task.

INPUT

Dataset Semantic of classes Classes Size Source
Cities Living style 3 212 Mercer
AAUP Salary of professors 3 960 JSE
Forbes Agency income 3 1,585 Forbes
Albums Album popularity 2 1,600 Metacritic
Movies Movie popularity 2 2,000 Metacritic

MODEL

Model Conf
Naive Bayes (NB) -
C4.5 decision tree -

k-NN k=3
SVM C ∈ {10−3, 10−2, 0.1, 1, 10, 102, 103}

OUTPUT
Metric Range Optimum

Accuracy [0,1] Highest

10 http://data.dws.informatik.uni-mannheim.de/rmlod/LOD_ML_Datasets/data/

datasets/

http://data.dws.informatik.uni-mannheim.de/rmlod/LOD_ML_Datasets/data/datasets/
http://data.dws.informatik.uni-mannheim.de/rmlod/LOD_ML_Datasets/data/datasets/

GEval: an Evaluation Framework for Graph Embedding Techniques 9

4.2 Regression

Table 4 contains details related to the gold standard datasets used for the Re-
gression task, the trained models and its parameter(s) (if any), and the evaluated
metric. The gold standard datasets used for the Regression tasks are the same
used for the Classification task. The missing entities are simply ignored. The
results are calculated using stratified 10-fold cross-validation.

Table 4: Details of the Regression task.

INPUT

Dataset Semantic of values Size Source
Cities Living style 212 Mercer
AAUP Salary of professors 960 JSE
Forbes Agency income 1,585 Forbes
Albums Album popularity 1,600 Metacritic
Movies Movie popularity 2,000 Metacritic

MODEL

Model Conf
Linear Regression -

M5Rules -
k-NN k=3

OUTPUT
Metric Range Optimum

Root Mean Squared Error (RMSE) [0,1] Lowest

4.3 Clustering

Table 5 contains details related to the gold standard datasets used for the Clus-
tering task, the trained models and its parameter(s) (if any), and the evaluated
metrics. The gold standard datasets encompass different domains:

– the Cities, Metacritic Movies, Metacritic Albums, AAUP and Forbes datasets
are the datasets already used for the Classification and Regression task, here
used as a single dataset. Since these datasets contain resources belonging to
distinct class (City, Music Album, Movie, University, and Company), the
goal of the clustering approach on this dataset is verifying the ability to dis-
tinguish elements belonging to completely different classes. Therefore, the
entities from each set are considered member of the same cluster;

– Cities and Countries are retrieved by SPARQL queries over DBpedia, asking
for all dbo:City11 and dbo:PopulatedPlace, respectively.

– the small version of the dataset Cities and Countries is defined as before,
but balancing the clusters by retrieving only 2,000 Cities. The balancing
operation has been performed since the majority of clustering approaches
(k-means is an example in this direction) attempt to balance the size of
the clusters while minimising the interaction between dissimilar nodes [17].
Therefore, unbalanced clusters could strongly affect the final results.

– Football and Basketball teams are retrieved by SPARQL queries run against
the DBpedia SPARQL endpoint, asking for all dbo:SportsTeam whose iden-
tifier contains respectively football team or basketball team.

11 dbo is the prefix of http://dbpedia.org/ontology/

http://dbpedia.org/ontology/

10 Pellegrino et al.

Table 5: Details of the Clustering task.

INPUT

Dataset Interpretation of clusters Clusters Size
Teams {Football T., Basketball T.} 2 4,206

Cities and Countries {Cities, Countries} 2 4,344
Cities, Albums, Movies, {Cities, Albums, Movies, 5 6,357

AAUP, Forbes Universities, Societies}
Cities and Countries {Cities, Countries} 2 11,182

MODEL

Model Conf
Agglomerative Clu. similarity metric

Ward Hierarchical Clu. similarity metric
DBscan similarity metric
k-Means -

OUTPUT

Metric Range Optimum
adjusted rand score [-1,1] Highest

adjusted mutual info score [0,1] Highest
Fowlkes Mallow index [0,1] Highest

v measure score [0,1] Highest
homogeneity score [0,1] Highest
completeness score [0,1] Highest

All the models but k-Means allow to customize the distance function. Therefore,
we exploit the similarity metric given in input by the user. Only k-Means is
bounded (due to its implementation) to the euclidean distance.

For each missing entities a singleton cluster is created, i.e., a cluster which
contains only the current entity. Further, soft clustering approaches, such as
DBscan, do not cluster all entities. We call these entities miss-clustered entities
and manage them exactly as the missing entities, i.e., we create a singleton
cluster for each of them. The evaluation metrics are applied to the combination
of the clusters returned by the clustering algorithm and all the singleton clusters.

4.4 Entity Relatedness

In the entity relatedness task we assume that two entities are related if they often
appear in the same context [15]. The goal of this task is to check if embedded
vectors are able to preserve the semantic relatedness which can be detected from
the original entities. The relatedness between vectors is brought back to the
computation of the similarity metric among them.
Table 6 contains details related to the gold standard dataset used for the Entity
Relatedness task, the model, and the evaluated metrics. The original version of
the gold standard dataset KORE [8] consists of 420 pairs of words: for each of 21
main words, there are 20 words whose relatedness has been manually assessed.
The dataset has been adapted by manually resolving each word as DBpedia
entities. The main entities belong to four distinct categories: Actors, Companies,
TV series, and Video-games. Missing entities are managed as follows:

– if a main entity is missing, it is simply ignored;

GEval: an Evaluation Framework for Graph Embedding Techniques 11

Table 6: Details of the Entity Relatedness task.

INPUT
Dataset Structure Size
KORE [8] main entity with a 420

sorted list of 20 related entities

MODEL

Model Conf
sim scores = [] similarity metric
for each main entity as me:

for each related entity as re:
sim scores.add(similarity(me, re))

sort(sim scores) //from more to less similar

OUTPUT

Metric Range Interpretation
Kendall’s tau [-1,1] Extreme values:

correlation coefficient correlation
Values close to 0:

no correlation

– if one or more related entities attached to the same main entity are missing,
first, the task compute the similarity among the available entities as reported
in the model described in the Table 6; then, all the missing related entities
are randomly put in the tail of the sorted list, and, finally, the evaluation
metric is calculated on the ranking obtained by the similarity score among
all the available pairs concatenated with the missing entities.

4.5 Document similarity

Table 7 contains details related to the gold standard datasets used for the Docu-
ment Similarity task and the evaluated metric. The original dataset used as gold
standard is the LP50 data set [10], a collection of 50 news articles from the Aus-
tralian Broadcasting Corporation. It were pairwise annotated manually by 8 to
12 different university students who evaluated the similarity among documents
assigning to each pair a point in the range [1,5] where 5 means maximum simi-
larity. To create the gold standard dataset, we worked as follows. For each pair
of documents, the average of the manually assessed rates is computed. Then, we
the extract the entities from the documents using the annotator xLisa12.

Model. The algorithm takes two documents d1 and d2 as its input and calculates
their similarity as follows:

– For each document, the related set of entities is retrieved. The output of this
step are the sets E1 and E2, respectively.

– For each pair of entities (i.e., for the cross product of the sets), the similarity
score is computed.

12 http://km.aifb.kit.edu/sites/xlisa/

http://km.aifb.kit.edu/sites/xlisa/

12 Pellegrino et al.

Table 7: Details of the Document Similarity task.

INPUT
Dataset Structure Size
LP50 [10] doc1 doc2 avg 50 docs

MODEL
Model Conf

it is described into similarity metric
the Doc. Sim. section

OUTPUT

Metric Range Interpretation
Pearson correlation [-1,1] Extreme: correlation

(P cor) Close to 0: no correlation
Spearman correlation [-1,1] Extreme: correlation

(S cor) Close to 0: no correlation
Harmonic mean of [-1,1] Extreme: correlation

P cor and S cor Close to 0: no correlation

– Only the maximum value is preserved for determining the document simi-
larity evaluation. Therefore, for each entity in E1 the maximum similarity
to an entity in E2 is kept and vice versa.

– The similarity score between the two documents is calculated by averaging
the sum of all these maximum similarities.

The annotators also provided weights. Hence, the previous procedure is repeated
by considering the weights to normalise the distances. The Document Similarity
task simply ignores any missing entities and computes the similarity only on
entities that both occur in the gold standard dataset and in the input file.

4.6 Semantic Analogies

The Semantic Analogies task is based on quadruplets of words (word1, word2,
word3, word4) and it checks whether it is possible to predict the last word based
on the first three ones, given that the same analogy exists between word1 and
word2 as between word3 and word4. A practical example [12] is the quadru-
plet (king, queen, man, woman). Then, one can compute X=vector(“queen”)-
vector(“woman”)+vector(“man”) and check if X is near to the embedding of
“king”. In Word2Vec both syntactic and semantic analogies are considered. How-
ever, in our evaluation framework we consider only semantic analogies as KGs
do generally not provide conjugated verbs, female and male nouns, singular and
plural words, which are required information to perform the syntactic analogy
evaluation. The original datasets used as gold standard can be freely be down-
loaded13. To create the gold standard datasets for the Semantic Analogies task,
all the words have been manually substituted with DBpedia entities.

Model. The task takes the quadruplets (v1, v2, v3, v4) and works on the first
three vectors to predict the fourth one. Among all the vectors, the nearest to the

13 https://sites.google.com/site/semeval2012task2/download

 https://sites.google.com/site/semeval2012task2/download

GEval: an Evaluation Framework for Graph Embedding Techniques 13

Table 8: Details of the Semantic Analogies task.

INPUT

Dataset Structure Size Source
Capitals and countries ca1 co1 ca2 co2 505 Word2Vec [12]

Currency (and Countries) cu1 co1 cu2 co2 866 Word2Vec [12]
Cities and State ci1 st1 ci2 st2 2,467 Word2Vec [12]

(All) capitals and countries ca1 co1 ca2 co2 4,523 Word2Vec [12]

MODEL
Model Conf

it is described into the Sem. An. section analogy function

OUTPUT
Metric Range Optimum
accuracy [0,1] Highest

predicted one is retrieved, where the nearest is computed by the dot product.
The analogy function to compute the predicted vector can be customised. The
vector returned by the function (the predicted vector) gets compared with the
top k most similar ones. If the actual forth vector is among the top k most similar
ones, the answer is considered correct. top k can be customised by the user.

5 Evaluation and Use Case

Execution time evaluation. We have already tested the execution time of each
task both in sequential and in parallel [13]. We are interested in estimating how
the vector size affects the computational time for the Classification and Re-
gression tasks. The experiments are performed on a system with an Intel(R)
Core(TM) i7-8700T CPU at 2.40GHz and 16 GB RAM. We evaluated vec-
tors produced by RDF2Vec [6] and by KGloVe [5]. Here, we report only re-
sults related to KGloVe since in both cases we observed the same trend. We
extrapolated only vectors required by the Classification and Regression tasks,
because of memory limitations. Then, we crop the filtered vectors by consider-

Fig. 2: It represents how vector size affects the execution time of the Classification
and Regression tasks: they are linerarly correlated.

14 Pellegrino et al.

ing [10, 20, 50, 100, 150, 180, 200] as size. We perform the Classification and the
Regression tasks on all the obtained vectors. In Fig. 2, you can observe the ac-
tual execution times of the ML tasks and you can note that the execution time
of Classification and Regression tasks is linearly correlated with the vector size.
Use case. In this use case, we focus on parameter tuning and we will use re-
sults produced by ML tasks to detect the best combination of hyper-parameters.
In this evaluation, we consider a modified version of KGloVe [4] where the dif-
ference with the original algorithm lies in the parallel implementation (GPU
based) of the underlying GloVe [1]. Our goal is to optimize KGloVe parameters
to find out the values that produce vectors which gain the best results in ML
tasks. In Fig. 3, the entire pipeline is visible. Starting from DBpedia 2016, the

Fig. 3: Pipeline of hyper-parameter tuning

graph walks produces a co-occurrence matrix for the nodes of the graph [4]. The
parameters that affect the co-occurrence matrix are α, ε, and the weighting func-
tion which is applied once on the graph (forward weighting function) and once
on the graph with reversed edges (backward weighting function). The Parallel
GloVe [1] implementation takes the co-occurrences matrix as input and trains
the vectors in parallel by minimising the loss function defined by GloVe [14].
The produced embeddings are affected by GloVe parameters, i.e., the vector size
and the learning rate. To reduce the employed resources in finding the optimum
parameters combination, we opt for a random search. We performed the eval-
uation by considering a set of 105 uniformly random generated combinations:
we tested α ∈ {0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95}; learning
rate= 0.01; vector size= 50; ε ∈ {10−6, 10−5, 10−4, 10−3}; weighting functions
(forward, backward) |weighers| × |weighers| = 12 options × 12 options. Once
produced vectors, we evaluate them on the Classification and Regression tasks
implemented by GEval. GEval runs 10 times both the Classification and the
Regression task and returns the average result. By considering the combination
of models and their configurations (see Table 3), the classification task produces
10 accuracy scores, while the regression task produces 2 RMSE scores (k-NN
and LR). For each run, we take the average of the results produced by the 5
datasets used as a gold standard.

Then, we rank the runs (and therefore the parameter combination) according
to the 12 different scores. The average rank is taken for evaluating the corre-
sponding parameter combination. To find out the performance according to a

GEval: an Evaluation Framework for Graph Embedding Techniques 15

given parameter y, we plot the performance for each run of y (if there is a value of
y which is used multiple times, we compute the average). In Figs. 4a and 4b the
ranked values of α and ε are presented. We observe that α = 0.7 and ε = 10−5

produce the best embeddings for ML tasks.

(a) α Ranking (b) ε Ranking

Fig. 4: Parameter tuning of KGloVe. Lower results are the best ones.

6 Conclusion

GEval aims to simplify the evaluation phase of KG embedding techniques pro-
viding tasks ranging from ML to semantic ones. To the best of our knowledge,
our proposal is one of the most comprehensive frameworks to evaluate KG em-
bedding techniques for heterogeneous graphs. GEval can be used in evaluation
and comparison over multiple tasks. Moreover, it can be also used in parameters
tuning, as shown in the presented use case. The modularity of GEval is achieved
by keeping each task separated, but still abstracting away the commonalities.

Our software framework can be used to perform benchmarks, but it is not
designed as a benchmark itself. We provide the framework as a command-line
tool and by APIs14. We do not provide server-side execution, since the com-
putation of tasks and the memory requirements can be onerous and can not
be determined apriori. In our opinion, it is more beneficial to provide the soft-
ware and give the opportunity of choosing the hardware requirements adapt to
the size of the managed vectors. GEval is not bounded to evaluate only node
embeddings. By incorporating also edges into the gold standard datasets, it is
possible to consider graph embeddings which embed both nodes and edges. Our
default gold standard datasets contain DBpedia entities. However, this is not a
framework requirement; it is possible to evaluate different sets of entities (and
embeddings of other KGs) by adding gold standard datasets.

The framework has been published with an open-source licence in order to be
used by the whole community. GEval is already of interest for experimentation
with graph embedding techniques by the authors’ institutes (Fraunhofer FIT,

14 https://pypi.org/project/evaluation-framework/

https://pypi.org/project/evaluation-framework/

16 Pellegrino et al.

the RWTH Aachen University, the University of Salerno, and IBM research).
Moreover, other institutes show an interest in collaborating to this project. The
Télécom ParisTech is interested in extending the already available tasks to incor-
porate gold standard datasets related to (French) museums. We are now working
to create the gold standard of interest. Moreover, we are working with the Uni-
versity of Madrid to incorporate the Link Prediction task in GEval. We are
certain that also others will benefit from this valuable resource.

References

1. Altabba, A.: Accelerating KGloVe graph embedding (2019), unpublished thesis
2. Ayala, D., Borrego, A., Hernández, I., Rivero, C.R., Ruiz, D.: AYNEC: all you

need for evaluating completion techniques in knowledge graphs. In: The Semantic
Web - 16th International Conference, ESWC. pp. 397–411 (2019)

3. Bonner, S., Brennan, J., Kureshi, I., Theodoropoulos, G., McGough, A.S., Obara,
B.: Evaluating the quality of graph embeddings via topological feature reconstruc-
tion. In: 2017 IEEE International Conference on Big Data. pp. 2691–2700 (2017)

4. Cochez, M., Ristoski, P., Ponzetto, S.P., Paulheim, H.: Global RDF vector space
embeddings. In: 16th ISWC. pp. 190–207 (2017)

5. Cochez, M., Ristoski, P., Ponzetto, S.P., Paulheim, H.: Kglove dbpedia uniform
embeddings (2017), https://doi.org/10.5281/zenodo.1320148

6. Cochez, M., Ristoski, P., Ponzetto, S.P., Paulheim, H.: Rdf2vec dbpedia uniform
embeddings (2017), https://doi.org/10.5281/zenodo.1318146

7. Goyal, P., Ferrara, E.: Graph embedding techniques, applications, and perfor-
mance: A survey. Knowledge-Based Systems 151, 78–94 (2018)

8. Hoffart, J., Seufert, S., Nguyen, D.B., Theobald, M., Weikum, G.: KORE:
Keyphrase overlap relatedness for entity disambiguation. In: Proc. of the 21st ACM
CIKM. pp. 545–554 (2012)

9. Kaminski, B., Pralat, P., Théberge, F.: An unsupervised framework for comparing
graph embeddings. CoRR abs/1906.04562 (2019)

10. Lee, M.D., Welsh, M.: An empirical evaluation of models of text document simi-
larity. In: XXVII Annual Conference of the Cognititive Science Society (2005)

11. Mara, A., Lijffijt, J., Bie, T.D.: Evalne: A framework for evaluating network em-
beddings on link prediction. In: Reproducibility in Machine Learning, ICLR (2019)

12. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed rep-
resentations of words and phrases and their compositionality. In: 27th Annual
Conference on Neural Information Processing Systems. pp. 3111–3119 (2013)

13. Pellegrino, M.A., Cochez, M., Garofalo, M., Ristoski, P.: A configurable evaluation
framework for node embedding techniques. In: The Semantic Web: ESWC Satellite
Events. pp. 156–160 (2019)

14. Pennington, J., Socher, R., Manning, C.D.: GloVe: Global vectors for word repre-
sentation. In: Proc. of the Conference on Empirical Methods in Natural Language
Processing. pp. 1532–1543 (2014)

15. Ristoski, P., Rosati, J., Noia, T.D., Leone, R.D., Paulheim, H.: Rdf2vec: RDF
graph embeddings and their applications. Semantic Web 10(4), 721–752 (2019)

16. Rulinda, J., de Dieu Tugirimana, J., Nzaramba, A., Aila, F.O., Langat, G.K.:
An integrated platform to evaluate graph embedding. International Journal of
Scientific and Engineering Research 9 (2018)

17. White, S., Smyth, P.: A spectral clustering approach to finding communities in
graph. In: Proc. of the SIAM International Conference on Data Mining (2005)

https://doi.org/10.5281/zenodo.1320148
https://doi.org/10.5281/zenodo.1318146

	GEval: a Modular and Extensible Evaluation Framework for Graph Embedding Techniques

