
Applying Knowledge Graphs as Integrated Semantic

Information Model for the Computerized Engineering of

Building Automation Systems

Henrik Dibowski1[0000-0002-9672-2387] and Francesco Massa Gray1[0000-0001-5419-3563]

1 Robert Bosch GmbH, Corporate Research, 71272 Renningen, Germany

henrik.dibowski@de.bosch.com

Abstract. During the life cycle of a smart building, an extensive amount of het-

erogeneous information is required to plan, construct, operate and maintain the

building and its technical systems. Traditionally, there is an information gap be-

tween the different phases and stakeholders, leading to information being ex-

changed, processed and stored in a variety of mostly human-readable documents.

This paper shows how a knowledge graph can be established as integrated infor-

mation model that can provide the required information for all phases in a ma-

chine-interpretable way. The knowledge graph describes and connects all rele-

vant information, which allows combining and applying it in a holistic way. This

makes the knowledge graph a key enabler for a variety of advanced, computer-

ized engineering tasks, ranging from the planning and design phases over the

commissioning and the operation of a building. The computerized engineering of

building automation systems (BAS) with an advanced software tool chain is pre-

sented as such a use case in more detail. The knowledge graph is based on stand-

ard semantic web technologies and builds on existing ontologies, such as the

Brick and QUDT ontologies, with various novel extensions presented in this pa-

per. Special attention is given to the rich semantic definition of the entities, such

as the equipment and the typically thousands of datapoints in a BAS, which can

be achieved as a combination of contextual modeling and semantic tagging.

Keywords: Building Automation System, Knowledge Graph, Information

Model, Semantic Definition, Semantic Tagging, Building Controls, Analytics

1 Introduction

Several trends in the building domain, such as the increasing ubiquitousness and inter-

connectivity of IoT devices [1], an energy or cost efficient operation guaranteed

through the well-orchestrated control of heterogeneous technical equipment and sys-

tems [2] and the adaptation of the indoor climate to individual needs [3], have led to

the concept of “smart buildings”. A central part of a smart building is the building au-

tomation system (BAS), which can be understood as the combination of software and

hardware required to operate and monitor the building [4]. BAS can consist of hundreds

or thousands of sensors, actuators and control functions, and a complex communication

system connecting all these devices into an interoperable, functioning system.

2

During the life cycle of a smart building, an extensive amount of different kinds of

heterogeneous information is required. Traditionally, there is an information gap be-

tween the different phases (e.g. planning, installation, operation) and stakeholders,

leading to information being exchanged, processed and stored in a variety of mostly

human-readable documents of different types. This leads to a large amount of time and

effort required to organize and integrate the data, and it makes it very hard or impossible

for computers to make use of the information.

In practice, the planning and design of building automation systems is hence a com-

plex, predominantly manual process. BAS planners must typically extract and interpret

requirements and information about the building and its technical systems from heter-

ogeneous sources, translate this information into a general or functional plan of the

system and finally design and program the complex, highly-connected BAS, including

the necessary software and hardware components and the communication between

them. This has several disadvantages: The manual data collection is cumbersome and

error-prone, certain tasks are repetitive and time consuming, and the manual BAS setup

can result in configuration and parameterization issues. Moreover, the current lack of

qualified technicians in the building automation field is forecasted to increase in the

next years [5].

Empowered by the strength of semantic technologies for describing information and

knowledge in a holistic, consistent and machine-interpretable way, this paper presents

a semantic model developed for an automated BAS engineering solution. The funda-

mental concept behind the solution, which is called “BIM2BA”, is to gather digital

information through all planning and engineering phases and use it in order to automat-

ically configure and parameterize the BAS, which is up to now a highly manual process

that requires skilled engineers. The information can stem from various sources, includ-

ing a Building Information Model (BIM), a requirement definition tool, digital product

catalogues or digital parts lists. By storing all the BAS planning data using semantic

technologies, information silos are avoided and errors and inconsistencies can be auto-

matically detected by employing reasoning on the resulting knowledge graph.

This paper specifically focuses on the semantic model and knowledge graph of the

BIM2BA solution. For this purpose we built upon existing ontologies, such as Brick

[6], and extended them where necessary. Moreover, we explain why we consider se-

mantic tagging to be an enabler for automating complex engineering tasks in the build-

ing domain.

2 The BIM2BA Solution and Workflow

The overall objective of the BIM2BA solution is to plan and generate working BAS

control networks automatically with only minimal manual effort. The development of

the BIM2BA solution was triggered by the current digitalization trend in the building

industry. An embodiment of this trend can be found in Building Information Modeling

(BIM) [7], a digital planning process for buildings that has been gaining strength in the

3

past decades. At the core of the BIM process lies the Building Information Model1,

which is typically understood as a machine-readable, digital representation of the build-

ing and its subsystems. By ingesting data stemming from a BIM, BIM2BA extracts,

interprets and stores the relevant architectural and engineering data automatically.

An overview of BIM2BA’s workflow and software architecture is shown in Fig. 1.

BIM2BA consists of a RESTful backend with four microservices, which represent and

implement the four phases of the BIM2BA workflow. The knowledge graph is the core

element of the BIM2BA backend and stores all relevant information. A browser-based

frontend acts as the interface for the user, typically planners and system integrators. On

the technical infrastructure level, the backend is powered by a Jena Fuseki triple store,

the Jena ontology API and the TopBraid SHACL API.

In the following, we explain the four phases of BIM2BA for the automatic genera-

tion of a BAS.

Fig. 1. Workflow and software architecture of the BIM2BA solution

1) Data Ingestion.

The BIM2BA workflow starts with the ingestion of a BIM file in the IFC format [8].

The IFC file must contain the building geometry and the HVAC system topology, in-

cluding information regarding the characteristics of the HVAC components.

The IFC file is automatically converted to ifcOWL [9] by using the IFCtoRDF con-

verter software [10], with the resulting triples stored in a separate dataset in the triple

store. Since ifcOWL is an automatic one-to-one translation of the complicated IFC

EXPRESS schema into RDF, the resulting structures stay complicated and are not

straightforward to navigate and search. To overcome these issues and drastically reduce

the model complexity (IFC models describe the entire geometry), our solution performs

a further model transformation from ifcOWL to our semantic model via a set of trans-

formation rules encoded as SPARQL update queries. This results in a much leaner se-

mantic model, which is optimized for following causalities and for performing semantic

search and reasoning.

Additionally, information from other sources can be ingested and stored in the

knowledge graph via dedicated ingestion pipelines (not shown in Fig. 1), along with

information manually entered with dedicated tools.

1 Also abbreviated as “BIM”

SPARQL Protocol

Data Ingestion
GUI

ifcOWL
Integrated Semantic Information Model

(Knowledge Graph)

IFC extraction

and conversion

Requirements

Engineering

Automatic

Generation of BAS

Control System

IFCtoRDF

Converter

FUSEKI

Triple Store

Commissioning

1 2 3 4

SPARQL

SHACL

REST REST REST REST

SPARQL

DatasetDataset

BIM2BA Backend BIM2BA

Web-Frontend

REST

IFC

Model

4

2) Requirements Engineering.

In addition to the technical data contained in the BIM, the BA planner must define the

functional and non-functional requirements for the BAS to be built. For this purpose,

he or she can use the requirements engineering web-frontend, which allows the context-

sensitive definition of requirements, given all known information about the building

and HVAC system. The requirements are stored in the knowledge graph and checked

for consistency and completeness with SHACL. An example of the requirements engi-

neering web-frontend can be seen in Fig. 2.

Fig. 2. Example of the requirements engineering web-frontend in the BIM2BA solution

In the simplified example presented there, the requirements comprise the following: the

type of control used in each control zone; the parameters of the controllers, such as the

upper and lower temperature bounds or the maximum CO2 concentration; the desired

operation schedule of the HVAC system.

3) Automatic Generation of BAS Control System.

Based on the information about the building, HVAC system and requirements available

in the knowledge graph, the control system of the BAS is automatically generated by

the BIM2BA solution and a description of it is added to the knowledge graph. At first,

the necessary control functions for each control zone are determined. The control func-

tions are then configured for the specific HVAC system. This includes setting up all

required connections for the communication between the control functions and the sen-

sors and actuators. Additionally, the controller’s parameters and the actuation ranges

for the different actuators have to be defined. This includes the inclusion of parameters

defined by the user during the requirements engineering, e.g. the desired temperature

bounds, and the post-processing and transformation of specific user requirements into

control parameters. The latter requires transformations and calculations, which can be

done directly on the knowledge graph via SHACL rules (see Section 5).

5

4) Commissioning.

In a final commissioning step, the generated BAS control system can be deployed to

the HVAC system. Tridium Niagara [11] is the currently supported target system.

In summary, the BIM2BA solution allows the user to create a BAS software without

requiring advanced knowledge about the inner workings of the control functions nor

the target system. A central part of BIM2BA is its rich semantic model, which is de-

scribed in more detail in Chapter 4.

3 Related Work

Information modeling and ontologies in the building automation domain have been

widely addressed in the past years, which resulted in a variety of approaches. Good

surveys of that field have already been provided in [12] and [13]. These works show a

clear trend in moving from conventional, often proprietary information models, mostly

based on text files or XML dialects, to more expressive approaches based on standard-

ized semantic technologies and ontologies.

Apart from solutions based on semantic technologies, there is some recent work that

uses OPC/UA as information model for BAS [14], or that stays on a high, technology-

independent level [15].

Since we are fully convinced about the strength of semantic technologies, we chose

them as technology for realizing the BIM2BA semantic model. Instead of developing

yet another ontology or information model from scratch, we analyzed the existing so-

lutions from the surveys [12] and [13] and additionally the Linked Building Data (LBD)

ontologies2 for suitability. Brick [6], the Haystack 4.0 ontology3 and the LBD ontolo-

gies appeared content-wise to be the best candidates with respect to completeness and

conciseness. Further evaluation criteria we applied were accuracy, clarity, adaptability

and the user community behind. We finally selected the Brick ontologies as the most

suitable approach. Brick allows for modeling a building from a structural point of view

(topological building), and of its BAS components and datapoints, which is a good fit

to what we need to model. Furthermore, there is a broad community of both industrial

and academic contributors and supporters behind Brick.

The Haystack 4.0 ontology on the contrary was not as convincing, since, due to its

claim of ensuring full backward compatibility to older Haystack versions, inherent is-

sues from Haystack from a sound and good modeling perspective kept on existing in it.

Such negative aspects are the strongly typed relations, poorly defined tags and the low

expressivity. Nevertheless, the Haystack-typical tagging mechanism, which found its

way into Brick as well, inspired us for our semantic modeling approach as a simple but

powerful way of defining semantics and enabling semantic search (see section 4.6).

Despite the good intentions behind the emerging LBD ontology and initiative, it was

not ready for being used at the time, but meanwhile it is worth reconsidering it.

2 https://w3c-lbd-cg.github.io/lbd/UseCasesAndRequirements/
3 https://project-haystack.dev/doc/docHaystack/Rdf

6

We made several extensions to Brick for customizing it to the needs of the BIM2BA

solution (see Chapter 4). The main differentiation of the BIM2BA semantic model, de-

scribed in this paper, and other existing solutions is the intended coverage of the whole

building life cycle in a holistic knowledge graph, including requirements, and the way

how a rich semantic definition of BAS entities is achieved by a combination of contex-

tual modeling and semantic tagging. This will be explained in the next section.

4 Integrated Semantic Information Model

The semantic model of the BIM2BA solution acts as an integrated information model

that can cover all life cycle phases of a building, making the information combinable

and applicable in a holistic way. As the information backbone, it is positioned at the

core of the BIM2BA software architecture, as can be seen in Fig. 1. It can contain all

the required information, including the building geometry, interior architectural layout,

technical details of the HVAC system, the controllers and their functional description,

the datapoints, parameters and the BAS requirements etc.

 As was mentioned in the last chapter, we chose the Brick ontologies as foundation

for the semantic model. We made several extensions to Brick to customize it to the

needs of the BIM2BA solution. For this purpose, we used the professional ontology

IDE TopBraid Composer. The customizations extend the coverage of Brick from the

operation phase of buildings towards the planning and engineering phase, by adding

capabilities for modeling and storing requirements for the BAS to be built, and for ex-

pressing the functionality of the control network.

The following sections describe the semantic model of BIM2BA in detail, from its

structure over extensions made to Brick up to different use cases that were addressed.

The ontology examples will show excerpts from a semantic model of a building at the

Bosch site in Renningen, Germany, which served as one of the demonstrator buildings

for the BIM2BA solution.

4.1 Ontology Layer Architecture

Semantic technologies provide powerful, flexible means of reusing and extending ex-

isting vocabularies. Ontologies can be (re-)used by simply importing them into a model,

and they can be extended by subclassing, by defining (sub-)properties and by enriching

them with further axioms and constraints. As mentioned in the previous section, the

Brick ontologies were one starting point for the BIM2BA semantic model.

Apart from Brick, two more groups of ontologies were (re-)used: the QUDT (Quan-

tities, Units, Dimensions and Types) ontologies4 and the Open PHACTS Units ontol-

ogy5,6 (OPS). QUDT defines an extensive list of units, quantities, dimensions and types

of more than a thousand in number, and is a de-facto standard for expressing units and

4 http://www.qudt.org/release2/qudt-catalog.html
5 http://www.openphacts.org/specs/2013/WD-units-20130913/
6 https://github.com/openphacts/jqudt/blob/master/src/main/resources/onto/ops.ttl

http://www.qudt.org/release2/qudt-catalog.html
http://www.openphacts.org/specs/2013/WD-units-20130913/
https://github.com/openphacts/jqudt/blob/master/src/main/resources/onto/ops.ttl

7

currencies. Still, not all units are defined in QUDT, which is why OPS is also employed.

OPS uses the QUDT ontology vocabulary and defines additional units, for example

parts per million (ppm), which was needed by BIM2BA to define CO2 concentrations.

The integration and extension of these ontologies resulted in a layered ontology

model, which is shown in Fig. 3. Arrows from one ontology block (the source) to an-

other (the target) represent an import relationship between both (groups of) ontologies,

i.e. all triples defined in the target model are imported into the source model. Those

arrows labeled with “uses” import and leave the models as they are, whereas arrows

labeled with “extends” import, extend and hence enrich the models. Fig. 3 shows also

the namespace prefixes used in all following examples for the respective ontologies.

The Brick Extensions ontology presented in this paper combines all aforementioned

ontologies and customizes the Brick ontologies in order to address aspects that were

not adequately supported, but needed (see Section 4.5).

The bottom layer comprises the building instance ontologies, each of which models

and represents a specific building of the real world, and each of which uses a part of the

ontology vocabulary defined in the upper ontology layers. Some insights on these vo-

cabularies and several example knowledge graphs will be explained in the following.

Fig. 3. BIM2BA ontology layer architecture.

4.2 Use Case: Modeling of the Hierarchical Building Structure

Brick defines the necessary concepts and object properties to define a structural build-

ing model. This is shown in Fig. 4 for the Bosch site in Renningen7. There, the concepts

brick:Building, brick:Floor, brick:Room and brick:HVAC_Zone are

used to model the building Rng111 with its first floor and two rooms in it. The

bf:hasPart object property defines the hierarchical containment structure, i.e.

building contains floor, floor contains rooms etc. Properties of the rooms, such as area

and volume, are modeled as specific static types of properties, which is one of the ex-

tensions made to Brick (see Section 4.5). They are attached to the rooms via the Brick

object property bf:hasPoint.

7 This and all following figures were created with TopBraid Composer.

Brick Ontologies
prefixes: brick, bf

Brick Extensions Ontology
prefix: brickex

OPS Ontology
prefix: ops

QUDT Ontologies
prefixes: qudt, unit

e
x
te

n
d

s

u
se

su
se

s

u
se

s

Building Instance Ontologies ...

8

Fig. 4. Structural building model example with some static properties7

4.3 Use Case: Modeling of the HVAC System and Energy Flows

Brick furthermore enables the modeling of HVAC plants and equipment and their up-

and downstream relationships. Fig. 5 shows that for a section of the BAS in building

Rng111: An air handling unit supplies two downstream VAV8 boxes, which supply the

rooms they are located in. The supply relationships are modeled with the Brick object

property bf:feeds, which represents the supply of material and energy (here: heated

or cooled air) from an upstream to a downstream plant or building element.

Fig. 5. Model of the material and energy flow from plants to zones

4.4 Use Case: Modeling of Datapoints

Datapoints, such as inputs and outputs of sensors, controllers or actuators in the build-

ing, can be represented as instances of the various specializing subclasses of

brick:Point. They are associated with an HVAC plant, equipment or building ele-

ment via bf:hasPoint object property. Fig. 6 shows an example of three modeled

datapoints that are associated with a room. Two of them are sensor datapoints of type

brick:Return_Air_Temperature_Sensor and brick:Return_Air_

CO2_Sensor. They have a BACnet address and identifier assigned via two new

datatype properties brickex:bacnetAddress and brickex:identifier.

8 Variable Air Volume, a type of ventilating and air-conditioning system

9

The third datapoint is a parameter of the room itself and defines its maximum possible

supply airflow as 240.5 m3/h. All three datapoints have a unit of measurement from

either the QUDT ontologies or the OPS ontology attached (see Section 4.1).

Fig. 6. Model of datapoints and their units, values and BACnet addresses

4.5 Customizations and Extensions Made to Brick

The Brick ontologies were one starting point for the semantic model for buildings, as

described in the previous section. Brick was customized by our team in order to address

aspects that were not adequately supported. The customization was done by subclassing

and by defining entirely new class trees and properties

Static Properties.

An important concept that was missing in Brick is the concept of static properties. Un-

like time series based datapoints, such as sensor values, commands or alarms (which

are widely addressed by Brick), static properties do not change over time. Therefore we

added a new subclass brickex:StaticValue to the brick:Point class, as can

be seen in Fig. 7. By defining new subclasses of brickex:StaticValue, such as

brickex:RoomArea, brickex:RoomVolume, new types of static properties can

now be defined and used, and they are semantically distinguishable from conventional

datapoints. The usage of these added classes was shown already in Fig. 4.

Datatype Properties.

Brick itself does not define any datatype properties. We had to import and define a

couple of datatype properties for modeling required attributes, such as names, identi-

fier, BACnet addresses etc.

10

Fig. 7. New concept brickex:StaticValue and subclasses for modeling static properties

Control Functions.

Brick is also missing concepts for control functions, i.e. classes for expressing the func-

tionality of field and automation devices. We added such concepts by introducing a

new class brickex:ControlFunction and a tree of subclasses underneath it, as

displayed in Fig. 8. This class hierarchy is not exhaustive, but extensible as needed.

Fig. 8. New class hierarchy for modeling control functions (extract)

New Datapoint Subclasses and Tags.

Additional extensions comprise new and more specific datapoint subclasses (brick:

Point) for some missing types of datapoints, and new tags (e.g. Area, Constant,

StaticValue) needed for tagging some of the new classes.

Requirements Model.

Furthermore, a comprehensive requirements model, shown in Fig. 9, was developed. It

comprises classes and properties for modeling requirements of a BAS that is to be

planned and built. A requirement (class brickex:Requirement) can define a con-

trol function as required feature to be implemented (object property brickex:re-

quiredFeature). Optionally, it can define one or more parameter values relevant

11

for the control function to be realized. Related requirements can be bundled into re-

quirement sets (class brickex:RequirementSet), and each requirement set can

be attached to either a building element or an HVAC plant/equipment.

The requirements model allows for expressing requirements such as the following: The

room “Rng111 A155” should be equipped with a CO2- and humidity-controlled venti-

lation with an upper CO2 concentration limit of 800 ppm. The room temperature should

be controlled by a digital thermostat, with the lower and upper temperature bounds

being 18 and 23°C, respectively.

Fig. 9. Requirements meta-model

Brick Criticism and Recommendations.

We recommend further improvements to Brick, especially regarding its usability and

human interpretability. What is completely missing in Brick are human readable labels

(rdfs:label) and descriptions (rdfs:comment) of the defined classes and object

properties, which compromises clarity. Furthermore, there are several occurrences of

duplicate class definitions that should be resolved.

Brick at its current state abstracts from the specific hardware of devices and sensors,

as well as from their specific software functionality, as it mainly focuses on the model-

ing of the HVAC equipment and their datapoints. If that was required, such a device

layer and relevant properties would need to be added to Brick.

4.6 Machine-Interpretable Semantic Definition

Semantics is the philosophical and linguistic study of meaning in language, be it natural

language or computational languages, such as programming languages and formal

12

logics. It is concerned with the meaning of words or symbols and what they stand for

in reality. In this section, we want to focus on the semantics of human readable words

that are stored and used in a computer system as names or labels for real-world entities.

Consider the following example: The strings “RtnAirCO2CV_A149”, “SupAir-

FlwMax_A149” and “RtnAirTempCV_A149” are examples of datapoint names

(rdfs:labels in Fig. 6). Such natural-language based texts carry some implicit se-

mantics, which is interpretable by a person reading it, albeit this much depends on the

person’s background and contextual knowledge he or she has. The meaning of such

labels is however not (directly) interpretable for machines, as it requires natural lan-

guage processing and knowledge about the domain and context.

Ontologies and knowledge graphs are an adequate means to model knowledge and

context in a machine-interpretable way, and they can define the semantics of symbols.

One way of capturing semantics is by applying rich logical formalisms that describe

entities and their semantics formally, such as with description logics. However, this can

become extremely complex, and may still not be able to capture the complete seman-

tics. A more manageable, yet powerful alternative way of defining semantics is contex-

tual modeling by means of a rich, interconnected knowledge graph. All relevant entities

are to be modeled therein with all relationships and property values that are relevant for

understanding their meaning, in the extent that is required for the particular use cases.

Yet, some semantic aspects of certain entities cannot be fully captured by modeling

the context alone. The meaning of the various types of datapoints, for example, be it

the current value of a return air temperature or a chilled water supply temperature set-

point etc., cannot be adequately expressed by modeling the surroundings of the data-

points, such as the equipment they belong to. In addition to the contextual modeling,

the solution for capturing the particular semantics of such entities is semantic tagging.

Semantic tagging is a concept that first appeared in the BAS domain in Project Hay-

stack, and it is also supported by Brick. Semantic tags are the underlying, elementary

building blocks that ideally cannot be further split down into smaller semantic units. In

Brick, semantic tags are defined as direct subclasses of bf:Tag class, and there are

313 of them predefined, from A like Acceleration to Z like Zone. Based on the

requirements of the BIM2BA use case, we added several new tags to Brick.

Fig. 10. Semantic definition of datapoints with semantic tags and units

13

Fig. 10 shows the semantic tagging approach of Brick on the three datapoints from

Fig. 6. While Fig. 6 shows the surrounding knowledge graph, i.e. contextual

knowledge, of the datapoints, Fig. 10 shows their semantic tags. The tags are attached

via bf:usesTag annotation properties to the classes of the datapoints. By that, in-

stantiating a class means that all the tags of the class are applicable to their instances.

The combination of all tags of an entity then describes the semantics of the entity. The

semantics of the datapoint “RtnAirTempCV_A149” (instance Room_A_149_Re-

turn_Air_Temperature_Sensor), for example, is Return AND Air AND

Temperature AND Sensor. Based on the tags, the datapoint is a sensor datapoint

that measures a return air temperature. Semantic tagging is applied in the same way to

semantically describe HVAC plants and equipment, or any other type of entities.

Semantic tagging is superior to the conventional definition of (large) class hierar-

chies, whenever the classes are defined by combining atomic concepts to more complex

ones. The datatypes of BAS are such an example, where several tags from multiple

dimensions are combined to express the overall semantics of datapoints (see examples

from Fig. 10). Expressing the entirety of possible datapoint types in a class hierarchy

would result in a highly complex, and very likely never complete taxonomy, along with

thousands of rdfs:subclassOf relations and multiple inheritance. Semantic tag-

ging however does not require to predefine all possible classes, i.e. combinations of

tags (despite Brick does so, which is in our opinion the wrong approach). Instead, a set

of tags should be in place that allows for selecting and combining the required ones.

We herewith propose, as an additional improvement of Brick and in general, to or-

ganize the tags into orthogonal tag categories (i.e. dimensions), such as measurement

(tags “temperature”, “pressure”, “mass flow” etc.), material (tags “air”, “water” etc.),

control (tags “current value”, “setpoint”, “command” etc.), plant (tags “VAV”, “air

handler unit” etc.) and so on. Consistency rules can then be imposed on the tags, such

as the rule that an entity can be tagged with maximum one tag per category, or rules

that constrain the combination of specific tags from different dimensions etc.

Besides the tags and the contextual model, the unit of measurement adds another

dimension to the semantic definition of a datapoint. Physical units such as degree cen-

tigrade (°C) and cubic meter per hour (m3/h), or pseudo-units such as part per million

(ppm) comprise certain semantics on their own, namely that it is a temperature, a vol-

ume flow or a concentration of some substance.

5 Semantic Model as Key-Enabler for Automating Engineering

Tasks and Advanced Features

A rich semantic model of a BAS, forming an interconnected knowledge graph, can

provide many advantages. The knowledge graph is a key enabler for the computerized

automation of a variety of engineering tasks that previously could only be realized by

qualified engineers. In the following, different use cases are explained.

Contextual modeling and semantic tagging enables semantic search, i.e. the search

for entities based on their semantic definition, instead of a primitive string matching. It

14

is straightforward to write SPARQL queries that search for all entities related to air

temperature by defining a SPARQL graph pattern that searches for all entities that have

both the tag Air and Temperature attached. This simple but powerful mechanism

allows for searching for all temperature-related setpoints, for all hot-water-related

plants and equipment, for all datapoints that are not alarms and many more scenarios.

Semantic search can simplify and automate the task of finding the equipment and

datapoints of interest in a building. Currently it is a complicated task to find the required

datapoints amongst couple of thousands in a building by using a string search on their

names. The hits are often wrong (false positives) or many datapoints are not matched

by the search (incomplete results), so that an engineer has to try different terms to im-

prove the search results, but finally still has to go through a list of datapoint names,

interpret their meaning and make the right selection. Semantic search dramatically im-

proves that situation by returning exact matches and complete search results, at the push

of a button. It enables software and algorithms to take over this task of finding and

selecting the right equipment and datapoints, and by that releases the engineers from

this repetitive and laborious task. That is a key enabler for several advanced features,

such as building management dashboards that are composed and visualized automati-

cally, or building analytics (e.g. fault detection, predictive maintenance) that are self-

enabled, i.e. get configured and commissioned completely automatically [16]. Even

virtual sensors that compute unavailable measurements virtually from other available

data, can be created automatically from such a knowledge graph [17].

In the BIM2BA use case, the knowledge graph is the key enabler for automating the

planning and engineering of BAS. The knowledge graph provides all required infor-

mation and makes it accessible and retrievable within one repository, with one query

language (SPARQL). Information is no longer kept in separated silos, without a seman-

tic definition, but it is totally integrated, connected and has a rich semantics. That ena-

bles computers to query and process the information, make sense out of it and automate

important engineering tasks. By storing the BAS requirements in the same knowledge

graph, with the same concepts, requirements can be mapped directly to matching equip-

ment, devices etc., which were described with the same ontologies. All that relieves

engineers to process the requirement documents, study product catalogs and specifica-

tions and match requirements to suitable control structures and equipment.

Queries and reasoning allow for performing operations and computations directly in

the knowledge graph. For a constant volume flow control to be realized for a zone, for

example, knowing the desired hourly air change rate9 (requirement entered by the user)

and the volume of the control zone (information from BIM), a SPARQL Insert query

or SHACL rule can calculate and materialize the equivalent volume flow in m3/h. It can

then be used as setpoint parameter for the controller, and it also defines the required

minimum volume flow of a ventilation damper to be chosen. Such computations can

automatically run in the background and expand the knowledge graph by additional

information, which otherwise had to be calculated and provided by engineers.

Reasoning is another key benefit of knowledge graphs. A reasoner can process axi-

oms and rules on the knowledge graph and derive new information that enriches it. That

9 The amount of time the air in a zone is completely replaced

15

has been applied and patented for a rule-based fault propagation and root cause analysis

for BAS [18]. It is based on a set of rules (e.g. SHACL rules) that formalize the causal-

ities of how faults can physically (via material flow) or logically (via control network)

propagate in the building and affect other equipment, zones and datapoints.

6 Conclusion

In this paper we presented the semantic model developed for the BIM2BA solution, a

software for the automated engineering of building automation systems (BAS). Creat-

ing a BAS is typically a highly manual task requiring the extraction and combination

of information from heterogeneous sources from different phases in the building’s

lifecycle. By harmonizing, combining and integrating BAS information into a rich, in-

terconnected knowledge graph, all information is made available in one repository and

usable in a holistic way. This overcomes information silos and enables semantic search

and reasoning over the complete set of triples.

As a basis for the semantic model we used the Brick ontologies and extended them

by different aspects, such as capabilities for modeling BAS requirements and the func-

tionality of the control network. The customizations extend the coverage of Brick from

the operation phase of BAS towards the planning and engineering phase. Furthermore,

we found certain issues with Brick, which we clarified and recommend to improve.

The resulting knowledge graph is a key-enabler for the automated engineering of

BAS, which was realized with the BIM2BA solution, as well as for a variety of other

advanced functionalities, such as automatically enabled fault detection and analytics.

The basis for such advanced use cases is the rich semantic definition of entities,

achieved with a combination of contextual modelling in the knowledge graph and se-

mantic tagging. This enables the precise retrieval of datapoints and other BAS entities

of interest with semantic search. Furthermore, it supports rule-based inferences on the

knowledge graph (SHACL rules), such as the creation and calculations of BAS param-

eters, the propagation of faults, or plausibility and consistency checks.

In summary, the developed semantic model provides a universally applicable, formal

vocabulary for the building automation domain. It has proven to be suitable for auto-

mating the engineering of BAS, as well as for realizing automatically enabled and ad-

vanced analytics, which can lead to a strong reduction in cost and time and to an in-

creased energy efficiency of the buildings.

References

1. Gupta, A., Tsai, T., Rueb, D., Yamaji, M., Middleton, P.: Forecast: Internet of Things —

Endpoints and Associated Services, Worldwide, 2017. Gartner Research (2017).

2. Henze, G. P., Kalz, D. E., Liu, S., Felsmann, C.: Experimental Analysis of Model-Based

Predictive Optimal Control for Active and Passive Building Thermal Storage Inventor.

HVAC&R Research 11(2), 189-213 (2005).

3. Feldmeier, M., Paradiso, J. A.: Personalized HVAC control system. In: IEEE Internet of

Things (IOT), Tokyo, Japan (2010).

16

4. ISO 16484-2: Building Automation and Control Systems (BACS) – Part 2: Hardware.

International Organization for Standardization (2004).

5. Seefeldt, F., Rau, D., Hoch, M.: Fachkräftebedarf für die Energiewende in Gebäuden.

Prognos, Study comissioned by VdZ: Forum für Energieeffizienz in der Gebäudetechnik

e.V. (2018).

6. Balaji, B. et al.: Brick: Towards a Unified Metadata Schema for Buildings. In: Proceedings

of the 3rd ACM International Conference on Systems for Energy-Efficient Built Environ-

ments, Stanford, California (2016).

7. buildingSMART International Homepage, https://www.buildingsmart.org/, last accessed

2019/10/28.

8. Industry Foundation Classes – An Introduction (buildingSMART) Homepage, https://tech-

nical.buildingsmart.org/standards/ifc/, last accessed 2020/03/12.

9. Beetz, J., van Leeuwen, J., de Vries, B.: IfcOWL: A Case of Transforming EXPRESS

Schemas into Ontologies. Artifical Intellingence for Engineering Design, Analysis and

Manufacturing 23(1), 89-101 (2009).

10. Pauwels, P.: IFCtoRDF. GitHub, https://github.com/pipauwel/IFCtoRDF, last accessed

2019/11/27.

11. Tridium Inc. Homepage, https://www.tridium.com/en/products-services, last accessed

2019/12/10.

12. Butzin, B., Golatowski, F., Timmermann, D.: A Survey on Information Modeling and

Ontologies in Building Automation. In: 43rd Annual Conference of the IEEE Industrial

Electronics Society (IECON 2017), Beijing, China (2017).

13. Dibowski, H., Ploennigs, P., Wollschlaeger, M.: Semantic Device and System Modeling for

Automation Systems and Sensor Networks. IEEE Transactions on Industrial Informatics

14(4), 1298-1311 (2018).

14. Fernbach, A., Kastner, W.: Semi-Automated Engineering in Building Automation Systems

and Management Integration. In: 26th IEEE International Symposium on Industrial Electron-

ics (ISIE), Edinburgh, UK (2017).

15. Lehmann, M., Andreas, J., Mai, T. L., Kabitzsch, K.: Towards a Comprehensive Life Cycle

Approach of Building Automation Systems. In: 26th IEEE International Symposium on In-

dustrial Electronics (ISIE), Edinburgh, UK (2017).

16. Dibowski, H., Vass, J., Holub, O., Rojicek, J.: Automatic Setup of Fault Detection Algo-

rithms in Building and Home Automation. In: 21st IEEE International Conference on Emerg-

ing Technologies and Factory Automation (ETFA 2016), Berlin, Germany (2016).

17. Dibowski, H., Holub, O., Rojicek, J.: Ontology-Based Automatic Setup of Virtual Sensors

in Building Automation Systems. In: International Congress on Ultra Modern Telecommu-

nications & Control Systems (ICUMT 2016), Lisbon, Portugal (2016).

18. Dibowski, H., Holub, O., Rojicek, J.: Knowledge-Based Fault Propagation in Building Au-

tomation Systems. In: Second International Conference on System Informatics, Modeling

and Simulation (SIMS 2016), Riga, Latvia (2016).

https://www.buildingsmart.org/
https://technical.buildingsmart.org/standards/ifc/
https://technical.buildingsmart.org/standards/ifc/
https://github.com/pipauwel/IFCtoRDF
https://www.tridium.com/en/products-services

