Enabling Web-scale Knowledge Graphs Querying

Amr Azzam

Vienna University of Economics and Business, Austria
aazzam@wu.ac.at

Abstract. Knowledge Graphs (KGs) have become an asset for integrating and
consuming data from heterogeneous sources. KGs have an influence on sev-
eral domains such as health-care, manufacturing, transportation and energy. Over
the years, the Web of Data has grown significantly. Today, answering complex
queries on open KGs is practically impossible due to the SPARQL endpoints
availability problem caused by well-known scalability and load balancing issues
when hosting Web-size data for concurrent clients. To maintain reliable and re-
sponsive open Knowledge Graph query services, several solutions have been pro-
posed: while SPARQL endpoints enforce restrictions on server usage such as
imposing limited query execution time or providing partial query results, alter-
native solutions such as Triple Pattern Fragments (TPF) attempts to tackle the
problem of availability by pushing query processing workload to the client-side
but suffer from the unnecessary transfer of irrelevant data on complex queries as
a result of the large intermediate results. The aim of our research is to develop a
new generation of smart clients and servers to balance the load between servers
and clients, with the best possible query execution performance, and at the same
time reducing data transfer volume, by combining SPARQL endpoints, TPF and
shipping compressed KG partitions. The proposed solution shall, on the server-
side, offer a suitable query execution service according to the current status of the
server workload. On the client-side, we plan research on novel client-side caching
mechanisms on the basis of compressed and queryable KG partitions that can be
distributed in a modular fashion. In addition, we plan to leverage query logs to
optimize the number and the distribution of partitions as well as distributing the
query load across a network of collaborative clients.

Keywords: Knowledge Graphs - Availability - Query Performance

1 Introduction

Knowledge Graphs (KGs) have emerged as a rising data management and knowledge
representation framework to provide scalable knowledge models that can capture facts
about entities as well as relations among these entities. Several implementations of
Knowledge Graphs have been introduced in diverse areas such as the pharmaceutical
industry [28], IT services, telecommunication, and government [24][26]. The prolifer-
ation of the KG concept offers the potential for building creative products and services



2 Amr Azzam

that introduce a wide range of commercial applications. For instance, Google’s Knowl-
edge Graph !, Knowledge Vault [11], Microsoft Satori> and Facebook’s Entities Graph®.

In addition to these commercial Knowledge Graphs, currently existing open inter-
linked KGs include DBpedia [4], Yago [20], Wikidata [30] and NELL [10]. These open
KGs are typically published following the Linked Data principles [7], using a semi-
structured RDF data model and support querying through SPARQL query language.
However, there are several open challenges in order to maintain public SPARQL ser-
vices on the Web, serving multiple concurrent clients.

That is, providing reliable public access to KGs through SPARQL querying is still
an open issue due to the unpredictable number of clients executing arbitrary SPARQL
queries. To mitigate these availability problems, data providers who expose SPARQL
endpoints typically add several constraints on the queries such as limiting the query ex-
ecution time on the server or limiting the number of retrieved results. Another solution,
Triple Pattern Fragments(TPF) [29] provides a more balanced query processing be-
tween the client and the server but with the cost of high network traffic. Finally, SaGe
[22] introduces a Web preemption mechanism that prevents the long-running queries
from consuming the server resources. However, SaGe lacks the ability to handle the
potential load of several concurrent complex queries at a time.

The proposed doctoral thesis aims to address the open research questions related
to the trade-off between the availability and performance in Web Knowledge Graph
interfaces. The main challenge is to provide a Knowledge Graph querying interface
that maintains high availability alongside high query execution performance, besides
minimizing the data transfer.

2 State of the Art

Overall four orthogonal approaches have been proposed in the literature that enable
hosting and querying open Knowledge Graphs that we will describe in the following:

2.1 SPARQL Endpoints

SPARQL endpoints offer SPARQL query interface over Knowledge Graphs. First, The
submitted queries are executed on top of a triple store such as Jena TDB [25], Star-
dog* and Virtuoso [12]. Then, the SPARQL query results are shipped via HTTP to the
requesting clients [13].

Although current SPARQL endpoints provide a high performance query processing,
it requires to run under low query workloads due to the excessive consumption of the
long-running queries to the server CPU and memory. Knowledge Graphs (KGs) that are
exposed via SPARQL endpoints suffer from well-known problems of low availability
and recurrent downtime [9, 29].

! https://developers.google.com/knowledge-graph

2 https://www.microsoft.com/en-us/research/project/knowledge-mining-api/
3 https://developers.facebook.com/docs/graph-api/

* https://www.stardog.com/



Enabling Web-scale Knowledge Graphs Querying 3

In order to tackle these challenges to provide live queryable Knowledge Graphs,
SPARQL endpoints with high demands generally introduce a set of usage restrictions
to ensure fair utilization of the server resources. For instance, Data providers impose a
time quota restriction [3] as DBpedia administrators set a running time quantum of 120
seconds on the server for each submitted query, limit results sizes to 10K results, refuse
the complex queries and limit the number of parallel requests per IP.

2.2 Linked Data Fragments

Linked Data Fragments framework (LDF) [29] laid the basis to define Triple Pattern
Fragments (TPF) a simple interface that attempts to tackle the problem of availability
through providing intelligent TPF clients which shift complex query processing to the
client-side, but with the cost of the increased network overhead due to potentially un-
necessary transfer of large intermediate results. This can lead to longer query execution
time that lowers the overall performance.

To address the drawbacks of TPF, Bindings-Restricted Triple Pattern Fragments [19]
(br'TPF) is proposed as an extended interface of TPF that gives a slight boost to the per-
formance of the query execution through attaching intermediate results to triple pattern
requests together with distributing the join between the client and the server using the
bind join strategy [15]. In this manner, brTPF [19] reduces the number of HTTP requests
in addition to minimizing the amount of data transferred compared to the “vanilla” TPF.
However, brTPF still would require a potentially high number of HTTP requests. In ad-
dition to the shortcoming of the ability to scale with large datasets.

2.3 SaGe

SaGe [22] is a Web preemption based SPARQL query interface designed to avoid the
starvation of the simple queries waiting for the complex ones that consume the server
resources. SaGe utilized a Round-Robin algorithm to maintain a fair allocation of server
resources between queries. To this end, SaGe formalizes a model that enables to sus-
pend and proceed queries with the mechanism to save the state of the query execution
to the client for later resumption. Additionally, SaGe has implemented some client-side
operators such as ORDER BY, OPTIONAL as well as aggregation functions to execute
parts of the query on the client-side.

Experiments show that SaGe enhances the average completion time per client in
addition to reducing the average network traffic per client. However, SaGe still exten-
sively consumes the server resources. Besides, the performance of SaGe is degrading
with the increasing sizes of the Knowledge Graphs, plus the execution time of concur-
rent complex queries is potentially increasing significantly.

2.4 Data Dumps

Last, Data Dumps provide a possibility to access Knowledge Graphs through grant-
ing access to download KG data thereafter the clients can execute SPARQL queries

> https://wiki.dbpedia.org/public-sparql-endpoint



4 Amr Azzam

on their local machines. This approach, however, somewhat defeats the vision of live
Knowledge Graph querying which is to offer live querying Web data. Furthermore,
even if bandwidth to download full data dumps is not considered, their sheer size may
be prohibitive in terms of local query processing for clients with limited resources.

3 Problem Statement and Contributions

To maintain querying interfaces on Knowledge Graphs on the Web, state-of-the-art
SPARQL query processing techniques can be categorized into three main strategies
that are explained in the following:

S1 Query Shipping: Knowledge Graphs are exposed for public querying through a
full SPARQL endpoint with high query performance but with low server availabil-
ity. The endpoints are responsible for executing the full SPARQL queries and only
retrieve the query results.

S2 Data Shipping: To alleviate the low availability problem of S1, several client-side
solutions such as Squin[17, 18] which perform query execution on the Web through
KG traversal. These approaches try to retrieve RDF data that can be processed
locally. Unfortunately, the evaluation of complex queries is impractical due to the
non-deferenceable URIs besides many non-trivial queries require the full KG dump
to be shipped to the client. Hence, These approaches increase the availability of the
server yet require strong client machines.

S3 Hybrid Shipping: Hybrid shipping approaches attempt to overcome the weak-
nesses of S1 and S2 through a more balanced client/server distribution such as the
aforementioned approaches TPF [29] and SaGe [22]. However, these approaches
have several potential issues which were discussed in Section 2.

In this dissertation, we plan to design, build and evaluate a KG interface that dis-
tributes the load of query evaluation between clients and servers by fruitfully combining
data shipping, query shipping and extending the space of hybrid shipping methods, re-
combining them in novel ways, under the following hypothesis:

Hypothesis: Our hypothesis is that each of the three discussed shipping strategies to
KG query services has its pros and cons for different scenarios, query workloads, and
concurrency parameters. Therefore, we aim at developing hybrid approaches that com-
bine all three strategies in the most efficient manner, depending on server load, client
resources, and potential collaboration among clients.

The main contribution of this dissertation shall, therefore, be to propose an efficient
approach to execute SPARQL queries on remote Knowledge Graphs while balancing
the trade-off between the high availability of the Knowledge Graph server and the ef-
ficient query execution. Generally, we expect to reduce the overall server cost as we
enhance the usage of CPU, caching and concurrency.

According to the problem statement, the hypothesis and the proposed contribution,
we have derived the following more concrete research questions:
RQ1 How can we achieve significant speedups to the decentralized querying of Knowl-
edge Graphs by developing a novel client/server distribution?
This research question can be further divided into three sub-questions, correspond-
ing to the smart client and server-side respectively:



Enabling Web-scale Knowledge Graphs Querying 5

RQ1.1 Can compressed partitions shipping reduce the load on servers as a novel
intermediate solution in between TPF and downloading full dumps?

RQ1.2 How can a (distributed) caching mechanism in smart clients further en-
hance KG availability?

RQ1.3 How can log analysis help to find trending queries and improve the graph
partitioning?

RQ2 How can we build a framework of hybrid server interfaces that dynamically se-
lect the appropriate interface based on the given query, client capabilities, and the
current server load?

RQ2.1 Which further novel optimization of joins and other operators in a hybrid
setting can yield further performance improvements?

RQ2.2 Client collaboration: How can clients - sharing their processing and caching
resources - collaboratively improve query processing?

RQ3 How can we build efficient update strategies for the server data (i.e. graph parti-
tions) and the smart client metadata (i.e. discoverability metadata)?

4 Research Methodology and Approach

We divide the research process into the set following tasks, to be carried out for each of

the aforementioned RQ’s:

T1 Investigation of the state-of-the-art research that is relevant to the identified prob-
lem. This includes the study of literature about Web Knowledge Graphs query inter-
faces, RDF data partitioning, peer to peer query processing, caching mechanisms,
join optimization and indexing in the areas of Semantic Web and Databases.

T2 Definition of solutions to the currently existing limitations requires the identifica-
tion of novel contributions. In addition to providing a concrete prototype imple-
mentation for the proposed contributions.

T3 Extensive experimental evaluation for the proposed contributions will be conducted
in comparison to state-of-the-art approaches. In addition, the experimental setup
will be designed according to the studied research questions based on (new)existing
benchmarks and the evaluation criteria.

This research approach has been followed in the contribution related to RQ1, smart-
KG, which we first presented in [5], we have already gone through these steps. We
identified a gap in terms of processing full dumps on the client-side vs. only shipping
part(ition)s of the KG to the client. We have already implemented a prototype for this
proposed solution® and performed an extensive experimental evaluation following the
plan described in Section 5 to compare smart-KG to other state-of-the-art approaches.
Am analysis of intermediate results is presented in Section 6 below.

5 Evaluation Plan

In this section, we describe the details of our evaluation plan to compare our proposed
approach with state-of-the-art approaches. This particularly includes the choice of suit-
able baselines, benchmark datasets, query workloads, and evaluation metrics. The goal

® https://ai.wu.ac.at/smartkg



6 Amr Azzam

of the experimental evaluation is to assess the performance of the implemented solu-
tions to the challenges associated with the formulated research questions by conducting
a series of experiments and analyzing the insights. The evaluation plan is explained in
the following:

Knowledge Graphs and Query Benchmarks

For the experimental evaluation, we will use synthetic as well as real-world RDF
Knowledge Graph datasets of variable sizes.

We use three synthetic datasets from Waterloo SPARQL Diversity Benchmark (Wat-
Div) [2] which is a recent benchmark that provides a wide spectrum of queries with
varying structural characteristics and selectivity classes with sizes of 10M, 100M, and
1B triples. In addition, we will employ the synthetic LUBM data generator to create
a dataset of 1.36 billion triples. Moreover, we will use Berlin SPARQL Benchmark
V3.1 (BSBM) [8] with three datasets from one up to three million products which will
generate three different dataset sizes 350, 700 and 1050 million RDF triples.

Additionally, we use real-world datasets. We will use SPARQL queries from FEA-
SIBLE [27] for RQ1.2 in order to test the optimization with respect to query logs.
FEASIBLE is a set of queries that have been generated by real users of DBpedia [21]
dataset (v.2015A). Furthermore, we plan to use YAGO2 [20] which is a real dataset
extracted from Wikipedia, WordNet, and GeoNames. Finally, Bio2RDF [6] is a life sci-
ence RDF Knowledge Graph that connects a set of different biological datasets with
4.64 billion. Both YAGO2 and Bio2RDF do not provide benchmark queries, therefore
we have reused a set of representative test queries that were created to test the perfor-
mance of distributed SPARQL query engines [16].

Evaluation Metrics We plan to consider evaluation metrics that provide an insight into
the trade-off between server availability, query execution performance, and client re-
sources consumption. Our evaluation considers the following metrics:

— Number of timeouts: Number of queries that time out. We set a timeout of 5 min.
for WatDiv and 30 min. for DBpedia queries.

— Average workload completion time per client: Elapsed time spent by a client
executing a workload of queries, measured with the t ime command of Linux.

— Server/Client Resource Consumption: We report on CPU usage per core, RAM
usage, and network traffic.

— Average time for the first tuple: The time for first results (TFFT) for a query is
the time between the query starting and the production of the first query results.

— Average number of requests and data transfer: the number of requests that the
smart client sent to the server to get complete results for a query. In addition, the
total transferred data when executing a SPARQL query.

— The Diefficiency metrics dief@t and dief@k: Two experiment metrics that are
able to capture and evaluate systems that produce incremental results [1].
dief@t measures the diefficiency of a query engine during the first t time units of
query execution. It computes the area under the curve of the answer distribution
function until t time unit. In our experiments, we will consider the dief@5 and
dief@10 in seconds as a time unit.
dief@k measures the diefficiency of an engine while producing the first k answers



Enabling Web-scale Knowledge Graphs Querying 7

when executing a query. We compare the performance of the different systems at
different answer completeness k = 25%, k = 50%, k = 75%, k = 100%.

6 Intermediate Results

smart-KG is a novel approach that introduces a new paradigm to distribute the query
processing between the client and the server through combining shipping compressed
Knowledge Graph partitions influenced by characteristic sets [23, 14] with intermedi-
ate results shipped using TPF. The experimental evaluation demonstrated that smart-
KG outperforms existing approaches in server resource usage in addition to the average
workload execution time as well as fewer timeout queries under highly concurrent query
workloads. On the other hand, SPARQL endpoints and SaGe have a better performance
than smart-KG with less number of clients and small-scale Knowledge Graphs. That is,
although smart-KG has better average workload execution time, TPF and SaGe outper-
form smart-KG in certain types of queries.

In our recent research [5], which we briefly described above, we have investi-
gated RQ1 and especially the question RQI.1. In this research, we introduced a novel
paradigm, smart-KG, to balance the load of evaluating SPARQL queries on Web Knowl-
edge Graphs by leveraging shipping compressed KG partitions. We presented a KG par-
titioning technique named Family-Based Partitioning which is, based on characteristic
sets [23, 14] as an initial partition heuristics, designed to combine the set of predicates
are shared between subjects of the same type. Family-Based Partitioning allowed us to
have descent KG partitions to be shipped over the Web.

Our empirical evaluation showed that smart-KG has significantly outperformed
the state-of-the-art server- and client-side Knowledge Graphs query engines. In our
study [5], we reported the performance of smart-KG in comparison to the currently
existing approaches SPARQL endpoints represented by Virtuoso, Triple Pattern Frag-
ments (TPF) and SaGe on three sizes of the synthetic dataset Watdiv on a benchmark
query workload [19]; plus, we tested the performance of the systems on the real-world
DBpedia [21] dataset (v.2015A).

As shown in Figures 1 and 2, smart-KG outperformed query performance of the
compared systems at increasing number of clients and variant dataset sizes. smart-KG
has no timeout queries in WatDiv-100M workload at different numbers of concurrent
clients (1, 10, 20, 40 and 80). Moreover, smart-KG showed a superior average workload
execution time per client compared to the other systems specifically with more than 20
concurrent clients. We should emphasize that in our experiments so far, going up to 80
clients, as Figure 1 shows, we did not yet manage to stress smart-KG: on the server-side,
where it more or less still showed almost constant effort by client. It could be expected
that this behavior degrades at even higher client numbers, which we plan to investigate
in the future.

We also plan to re-assess our results from [5] wrt. the proposed metrics in Section 5
in more setups and analyze which types of queries, datasets and setups favor smart-KG
with respect to other approaches.



8 Amr Azzam

400

TPF —®-- SmartKG —&—
350 SaGe —®— Virtuoso —&—

300
250
200
150 €7
100

50
o

Average Execution Time (minutes) per Clien!

Number of Clients

Fig. 1. Average execution time on Watdiv-100M, from [5]

2000 b

TPF — @
1800 SaGe —— Vs

1600 | SmartkG —&— 4

=

1400 Ea.
1200 - / -
1000 / .
800 |- S :
500
400
200

Avg. Execution Time (minutes) per Client

10M 100M 1000M
WatDiv size (triples)

Fig. 2. Performance on the workloads (80 clients) at increasing KG sizes, from [5]

7 Conclusions and Lessons Learned

In this doctoral work, we aim to tackle the lack of reliable live public querying to
Knowledge Graphs on the Web. We have formulated 3 main research questions that
aim to democratize the access to Knowledge Graphs by enabling Web-scale SPARQL
querying. Our intermediate results on RQ1 provide an insight into how shipping com-
pressed graph partitions that can be locally queried could balance the load between
servers and clients. Our empirical results demonstrate significant improvements in server
availability with enhanced query performance.

Our current work addressing RQ1 will investigate further other partitioning strate-
gies that could provide a reasonable trade-off of shipping sizes. In addition, we plan to
explore the space of query-driven partitions through analyzing the Knowledge Graphs



Enabling Web-scale Knowledge Graphs Querying 9

query logs so that we could achieve the promised balancing between efficient query
execution and the availability of the public services.

Thereafter, we intend to determine suitable heuristics for a cost model in RQ2.1 in
order to explore the space of feasible query plans so that the proposed framework could
find the best query execution plan based on the server and the client available resources.

Lastly, we plan to address RQ2.2. We will explore building a peer-to-peer collabo-
rative smart clients network in order to enhance the server availability through sharing
the shipped graph partitions rather than downloading it from the KG server. This will
lead us to a decentralized architecture for KG querying.

As for RQ3, we intend to explore novel update strategies to the compressed graph
partitions in order to avoid the overhead of the partitions regeneration in case of evolv-
ing Knowledge Graphs.

Acknowledgments

This work has been supported by the European Union Horizon 2020 research and in-
novation programme under grant 731601 (SPECIAL) and by the Austrian Research
Promotion Agency (FFG) grant no. 861213 (CitySPIN). I thank my doctoral supervi-
sor Prof. Dr. Axel Polleres and my co-authors Dr. Javier D. Fernandez and Dr. Maribel
Acosta and Martin Beno for their helpful discussions, comments and feedback.

References

1. M. Acosta, M.-E. Vidal, and Y. Sure-Vetter. Diefficiency metrics: Measuring the continuous
efficiency of query processing approaches. pages 3—19, 10 2017.

2. G. Alug, O. Hartig, M. T. Ozsu, and K. Daudjee. Diversified stress testing of rdf data man-
agement systems. volume 8796, pages 197-212, 10 2014.

3. C. Aranda, A. Hogan, J. Umbrich, and P-Y. Vandenbussche. Sparql web-querying infras-
tructure: Ready for action? The Semantic Web - ISWC 2013 - 12th International Semantic
Web Conference, pages 277-293, 01 2013.

4. S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives. Dbpedia: A nucleus
for a web of open data. volume 6, pages 722—735, 01 2007.

5. A.Azzam,J. D. Ferndndez, M. Acosta, M. Beno, and A. Polleres. Smart-kg: Hybrid shipping
for sparql querying on the web. In Proceedings of The Web Conference 2020, WWW 20,
page 984-994, New York, NY, USA, 2020. Association for Computing Machinery.

6. F. Belleau, M.-A. Nolin, N. Tourigny, P. Rigault, and J. Morissette. Bio2rdf: Towards
a mashup to build bioinformatics knowledge system. Journal of biomedical informatics,
41:706-16, 04 2008.

7. C. Bizer, T. Heath, and T. Berners-Lee. Linked Data - The Story So Far. Int. J. Semantic
Web Inf. Syst., 5(3):1-22, 2009.

8. C.Bizer and A. Schultz. The berlin sparql benchmark. Int. J. Semantic Web Inf. Syst., 5:1-24,
04 20009.

9. C. Buil-Aranda, A. Hogan, J. Umbrich, and P.-Y. Vandenbussche. Sparql web-querying
infrastructure: Ready for action? In H. Alani, L. Kagal, A. Fokoue, P. Groth, C. Biemann,
J. X. Parreira, L. Aroyo, N. Noy, C. Welty, and K. Janowicz, editors, The Semantic Web —
ISWC 2013, pages 277-293, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.



10

10

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Amr Azzam

A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. Hruschka, and T. M. Mitchell. Toward
an architecture for never-ending language learning. In AAAZ, 2010.

X. L. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Murphy, T. Strohmann, S. Sun,
and W. Zhang. Knowledge vault: A web-scale approach to probabilistic knowledge fusion.
In The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’14, New York, NY, USA - August 24 - 27, 2014, pages 601-610, 2014. Evgeniy
Gabrilovich Wilko Horn Ni Lao Kevin Murphy Thomas Strohmann Shaohua Sun Wei Zhang
Geremy Heitz.

O. Erling and 1. Mikhailov. RDF support in the Virtuoso DBMS. In Networked Knowledge-
Networked Media, pages 7-24. Springer, 2009.

L. Feigenbaum, G. T. Williams, K. G. Clark, and E. Torres. SPARQL 1.1 protocol. Recom-
mendation, W3C, March, 2013.

A. Gubichev and T. Neumann. Exploiting the query structure for efficient join ordering in
SPARQL queries. In EDBT, volume 14, pages 439-450, 2014.

L. M. Haas, D. Kossmann, E. L. Wimmers, and J. Yang. Optimizing queries across diverse
data sources. In VLDB, 1997.

R. Harbi, I. Abdelaziz, P. Kalnis, N. Mamoulis, Y. Ebrahim, and M. Sahli. Accelerating
SPARQL queries by exploiting hash-based locality and adaptive partitioning. The VLDB
Journal, 25(3):355-380, June 2016.

O. Hartig. Squin: a traversal based query execution system for the web of linked data. In
Proc. of SIGMOD, pages 1081-1084. ACM, 2013.

O. Hartig, C. Bizer, and J. C. Freytag. Executing SPARQL queries over the web of linked
data. In Proc. of ISWC, pages 293-309, 2009.

O. Hartig and C. Buil-Aranda. Bindings-restricted triple pattern fragments. In Proc. of
ODBASE, volume 10033 of LNCS, pages 762-779, 10 2016.

J. Hoffart, F. M. Suchanek, K. Berberich, and G. Weikum. Yago2: A spatially and tempo-
rally enhanced knowledge base from wikipedia. Artificial Intelligence, 194:28 — 61, 2013.
Artificial Intelligence, Wikipedia and Semi-Structured Resources.

J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N. Mendes, S. Hellmann,
M. Morsey, P. van Kleef, S. Auer, and C. Bizer. DBpedia - A large-scale, multilingual
knowledge base extracted from wikipedia. Semantic Web, 6(2):167-195, 2015.

T. Minier, H. Skaf-Molli, and P. Molli. Sage: Web preemption for public SPARQL query
services. In The Web Conference, pages 1268-1278. ACM, 2019.

T. Neumann and G. Moerkotte. Characteristic sets: Accurate cardinality estimation for RDF
queries with multiple joins. In Proc. of ICDE, pages 984-994. IEEE, 2011.

N. Noy, Y. Gao, A. Jain, A. Narayanan, A. Patterson, and J. Taylor. Industry-scale knowledge
graphs: Lessons and challenges. Communications of the ACM, 62 (8):36—43, 2019.

A. Owens, A. Seaborne, N. Gibbins, and mc schraefel. Clustered tdb: A clustered triple store
for jena. Project report, November 2008.

S. Ronzhin, E. Folmer, Maria, Brattinga, W. Beek, Lemmens, and v. Veer. Kadaster knowl-
edge graph: Beyond the fifth star of open data. Information, 10:310, 10 2019.

M. Saleem, Q. Mehmood, and A.-C. Ngonga Ngomo. Feasible: A feature-based spargl
benchmark generation framework. In International Semantic Web Conference (ISWC), 2015.
F. Shen and Y. Lee. Knowledge discovery from biomedical ontologies in cross domains.
PloS one, 11:¢0160005, 08 2016.

R. Verborgh, M. Vander Sande, O. Hartig, J. Van Herwegen, L. De Vocht, B. De Meester,
G. Haesendonck, and P. Colpaert. Triple Pattern Fragments: a low-cost knowledge graph
interface for the Web. Journal of Web Semantics, 37-38:184-206, Mar. 2016.

D. Vrandeci¢ and M. Krotzsch. Wikidata: A free collaborative knowledgebase. Communi-
cations of the ACM, 57:78-85, 09 2014.



