
cqp4rdf: Towards a Suite for RDF-based Corpus Linguistics
Maxim Ionov Florian Stein Sagar Christian Chiarcos
ionov@informatik.uni-frankfurt.de flo@stein-software.com sagar.r16@iiits.in chiarcos@informatik.uni-frankfurt.de

cqp4rdf: Towards a Suite for RDF-based Corpus Linguistics
Maxim Ionov Florian Stein Sagar Christian Chiarcos
ionov@informatik.uni-frankfurt.de flo@stein-software.com sagar.r16@iiits.in chiarcos@informatik.uni-frankfurt.de

1. RDF corpora

• Linguistic corpora are collections of texts with annotations:
morphological, syntactic, semantic, etc.

• There are myriads of ways to store and query corpora, as
well as many tagsets even for the same language and the
same type of annotation

• Classic ways of corpora representation → low level of inter-
operability:

– between different corpora

– between corpora and other linguistic resources: dictionar-
ies, thesauri, etc.

• Representing corpora as Linguistic Linked (Open) Data in
RDF has many advantages

– incorporation of any type of annotation on any stage of
corpus development

– harmonising annotations between tagsets and storing
multiple annotations for the same data

– linking to external resources, e.g. OntoLex-lemon dictio-
naries

• There are standards and evidence of representing corpora
as Linked Data (NIF, CoNLL-RDF) but not of using it.

• Possible reason — the lack of user-friendly ecosystem.

• cqp4rdf is a first step on theway of creating the ecosystem
for corpus-based linguistic research using LLOD corpus
resources.

2. CQP query language

• CQP is a well-established and widely used query language
for corpora.

• Ideal for extracting sequences of tokens with specific proper-
ties, i.e. a sequence of adjectives followed by one noun.

• The syntax is simple and concise:

– Each token is denoted as []. Quantifiers such as +, *, ?,
{n, m} can be applied: []{1,10}.

– Tokens can be filtered by their properties:
[word="comment" and pos="V"]. String values are
regular expressions: [pos="V.*"].

– Segments are denoted in XML-style: <tag-name/> and
are usually used in combination with special construc-
tions, (not) containing and (not) within.

– Tokens can be named (1:[]) and their properties can be
compared:
1:[pos="A.*"] [lemma="and"] 2:[] &
1.lemma=2.lemma returns constructions like more and
more

• We add namespaces to properties and segment names:
conll:WORD, nif:Sentence.

• List of namespaces and optional declaration of possible prop-
erties are configured for a given corpus.

• This allows handling multiple tagsets or multiple corpora.

Examples

• A noun followed by a verb with 0 to 2 words in between:

[conll:UPOS="NOUN"] []{,2} [conll:UPOS="VERB"]

• Pronouns with sequences of forms to have, to be or to do:
[conll:UPOS="PRON"] [conll:LEMMA="(have|be|do)"]{2,}

3. cqp4rdf architecture

cqp4rdf is designed to have modular architecture and consists of

• Frontend: interface where user interacts with corpora,

• Backend: query conversion, getting and handling query results,

• Administrative part: adding and configuring corpora.

Frontend Backend

TriplestoreUser

Administrator

Interface API cqp4rdf-core cqp4rdf-admin

CQP with query builder

Visual results

CQP

JSON

CQP

Query results
JSON

SPARQL

• Decoupling the frontend gives the possibility to use it with better developed corpus manager interfaces.

• Operations specific to RDF representations of corpora are localised and are used only before querying the triplestore → making it
easier for adapting to different representations.

• In the current implementation, operations that modify data, e.g. linking or harmonising tagsets, are external to cqp4rdf.

4. Adding and configuring data

• One instance of cqp4rdf supports multiple corpora. Each has its section in the main configuration file, config.yaml.

• Global settings should include a pointer to a SPARQL endpoint of a triplestore with corpora.

• Adding a corpus is simple:

– Insert RDF into a triplestore indicated in the config file,

– Add a section describing a corpus into a configuration file. Necessary settings are the name, IRI with the corpus graph, and the list
of prefixes.

• Additionally, it is possible to describe the data types and possible values for token properties, e.g. hide some fields or set a list of possible
values for grammatical tags.

Fig. 2: A minimal configuration for a corpus Fig. 3: Detailed configuration for a POS field

5. Current implementation

• A demo installation consists of a minimalistic frontend with a part of English Universal Dependencies corpus.

• Users can type a query and get results in a KWIC format, familiar for corpus linguists.

• Clicking on a token in the results, users can see all the properties of this token.

• The interface contains some example queries to start with.

• Try it out at https://purl.org/liodi/cqp4rdf/ud, learn more at https://purl.org/liodi/cqp4rdf

6. Future directions

Performance improvement

• In the current implementation, SPARQL queries are slow. →
Benchmarking and optimising are needed.

• We could benefit from indexing to speed up common queries.

• Usually, storage and search is highly optimised for large cor-
pora.

• Still, even for non-RDF corpus managers complex queries take
time to execute.

• cqp4rdf works well for small corpora of less-resourced lan-
guages.

• Further experiments will show the range of its applicability

Managing corpora

• Adding and managing corpora via a dedicated interface
would increase usability.

• Using CoNLL-RDF, we can import tab-separated corpus files
(CoNLL format).

• Some data modification can be handled via SPARQL up-
dates, they can be applied also using CoNLL-RDF.

• Providing a convenient way to apply predefined or custom
updates will allow handling more advanced queries with less
computational effort (i.e. adding multi-layered annotations
for segments like sentences or named entities).

cqp4rdf in the wild

• To fully understand what is missing, we need use cases and cor-
pus research done with cqp4rdf.

• To make this possible, one way would be to adapt existing corpus
manager frontends

• Meanwhile, we continue our tests with different tagsets and lan-
guages:

– Eastern Armenian National Corpus,

– Corpora of less-resourced languages collected by field lin-
guists,

– Integration in Cuneiform Digital Library Initiative platform as
a part of Google Summer of Code 2019.

https://purl.org/liodi/cqp4rdf/ud
https://purl.org/liodi/cqp4rdf

