
Linked Data Creation with ExcelRDF

Karl Hammar[0000−0001−8767−4136]

Jönköping AI Lab
Jönköping University, Sweden

karl.hammar@jail.ai

1 Introduction

Constructing an RDF-based knowledge graph requires designing a data model
(typically an OWL ontology) and transforming one’s data into an RDF repre-
sentation that is compliant with said model. There are a multitude of tools built
to support these two tasks, and of the ones adressing the first task, several that
are specifically intended to enable less experienced users to construct, maintain,
or analyse ontologies easily and with confidence: these include WebProtégé [8],
VOWL-based visualizations [5], CoModIDE [7], etc.

The second task, transforming existing data into RDF representation, can
either be carried out in a batch manner (e.g., using OpenRefine, or an R2RML-
based [2] transformation tool like DB2Triples), or at query time (e.g., using
databases that provide RDF views over relational data, again typically employing
R2RML mappings). Neither is easy for a linked data beginner. In the former case
they must typically learn a non-trivial mapping tool and its vocabulary; in the
latter case, a server daemon needs to be setup (and possibly licensed), a mapping
definition needs to be defined, etc. In neither case is the user guided on how to
create RDF data in accordance with a specific ontology.

By contrast, Microsoft Excel is a well-established and well-understood soft-
ware for data wrangling in industry. It is installed on a large number of desktop
machines already, and office workers tend to navigate and use its basic functional-
ities with minimal, if any, training. Integrating user-friendly ontology-based RDF
creation functionalities in Excel enables this group of users to easily contribute
to knowledge graph construction; that is the intuition behind the ExcelRDF1

tool. ExcelRDF was created in the Building Knowledge project, where it is used
by real estate owners to populate knowledge graphs using the RealEstateCore
[3] smart buildings ontology. Its key design criteria are that it should:

– Be easy to install, update, and start; no IT support should be required.
– Employ a transparent syntax for mapping cells to RDF constructs; nothing

should be “hidden” in the underlying Excel file format.
– Support users in creating said mappings from a source ontology.
– Generate Excel files that can be shared across an organisation, even by users

who do not have ExcelRDF installed, without the RDF mappings being lost.
– Provide simple and direct data export from spradsheet to RDF graph; any

data transformation can be done in Excel itself.
1 https://dev.realestatecore.io/ExcelRDF/

https://dev.realestatecore.io/ExcelRDF/

2 K. Hammar

2 Related Work

There are several tools that enable spreadsheet-to-RDF translation, but to my
knowledge, none that emphasize the ExcelRDF design criteria described above.

XLWrap [4] and Spread2RDF2 operate on spreadsheets and translate these
(batch-based or at query time) using custom mapping languages. DB2Triples3

and D2RQ [1] do the same, but employ mapping languages that have been
standardised (the R2RML and D2RQ languages, respectively). These tools are
geared toward users who are already quite familar with linked data and who are
comfortable with writing their own mapping rules.

OpenRefine4 is a well-established tool for data transformation and its RDF
plugin supports GUI-based mapping of tabular data (e.g., from Excel) to an
RDF graph structure. Users can modify their data using both GUI approaches
(e.g., merging or splitting columns, filtering values, etc) and for more fine-grained
data manipulation on cell-by-cell level, through the GREL language. However,
OpenRefine does not allow for easy sharing of work, as each participant needs
to import the shared project into their own on-machine OpenRefine install; and
installing it, and the RDF extension, is non-trivial.

TabLinker5 uses spreadsheet styling to indicate the mapping of cells, rows,
and columns to values, types, properties, etc. A spreadsheet that has been anno-
tated using TabLinker styles can be shared and edited by multiple users before
being run through the command line script that exports RDF. Compared with
ExcelRDF, TabLinker however lacks an ontology import feature, so users need
the develop style-based mappings by hand.

Other approaches to bring ontology structures into spreadsheets include
RightField [9] (for Excel) and OntoMaton [6] (for Google Spreadsheets). These
tools allow for the annotation of spreadsheet data by terms in an ontology; but
they do not include RDF export functionality.

3 System Design and Features

ExcelRDF is implemented as a .NET-based Microsoft Office VSTO Add-In. The
.NET underpinnings allows ExcelRDF to reuse the DotNetRDF6 library, saving
significant development effort. The VSTO plugin infrastructure also provides
a dead-simple deployment mechanism, “ClickOnce”, which generates a user-
friendly installer, and provides automated Internet-based updates.

Using ExcelRDF consists of three distinct steps. First, the user loads an
ontology, and through a friendly GUI selects which classes and properties from
that ontology that they intend to use (Figure 1) – based on their selection, the
tool creates corresponding works sheets and column headers in an otherwise

2 https://github.com/marcelotto/spread2rdf
3 https://github.com/antidot/db2triples
4 http://openrefine.org/
5 https://github.com/Data2Semantics/TabLinker
6 https://www.dotnetrdf.org/

https://github.com/marcelotto/spread2rdf
https://github.com/antidot/db2triples
http://openrefine.org/
https://github.com/Data2Semantics/TabLinker
https://www.dotnetrdf.org/

Linked Data Creation with ExcelRDF 3

Fig. 1: Ontology import dialog

empty Excel skeleton file. Second, the user fills out this skeleton file with their
data, using standard Excel tools and existing workflows. Third, once the data is
complete the user exports it into RDF that is compliant with the initially loaded
ontology – a simple GUI is provided to configure data namespaces and prefixes
(Figure 3). Each of these steps is described in detail below.

OWL Import The ExcelRDF ontology import GUI (Figure 1) is launched from
the “Data” ribbon menu. The user is asked to select an on-disk OWL ontology
file7. The named classes in this file are parsed and added to the class selection
GUI; the properties for each such class (i.e., that have the class asserted as
rdfs:domain) are added to the property selection GUI for that class. The user
selects the classes and properties that they wish to use for their data, and the
tool then constructs one work sheet (i.e., Excel tab) per selected class, and for
each such work sheet adds columns corresponding to the selected properties.
Additionally, a special identifier column is inserted and used for IRI minting.
For examples of the complete structure, see Figures 4a and 4b.

The header row cells on each generated work sheet are marked up with Excel
notes that describe the properties that underlie each column; these notes (see
Figure 2a for an example) act as instructions for the RDF exporter. Optionally,
the user may when importing an ontology select to embed anonymous individuals
on a work sheet, spanning over several columns; when doing so, the cells of these
columns will correspond with nested objects through an intermediate anonymous
node. In the latter case, the RDF exporter instructions become a little more
complex: see Figure 2b for an example.

7 Supported serializations: XML/RDF, Turtle, JSON-LD, NTriples, NQuads, and TriG

4 K. Hammar

(a) Column representing the
associatedWithDevice property.

(b) Column representing the label
of a nested individual of the type
RealEstateComponent.

Fig. 2: RDF generator instructions embedded in Excel skeleton

Fig. 3: Ontology import dialog

RDF Export Once the user has populated the spreadsheet with data, they
launch the RDF export GUI (Figure 3). ExcelRDF extracts URI namespaces
from the classes and properties mentioned in the note objects, and suggests that
these be added to the namespace prefix mapping in the same GUI; additionally,
the user is asked for a data namespace, that will be prepended to the identifiers
that the user has given in the identifier column.

ExcelRDF generates an RDF graph8 using the aforementioned notes objects
it finds in the work sheet headers. Every cell on the sheet will generate an RDF
statement where the subject is the row identifier, the predicate is the column
header, and the object is the literal value held in the cell, or in the case of an
object property, is a URI with that value as local name (Figure 4c); unless if the
embedded anonymous individuals feature has been used, in which case a more
complicated structure such as the one in Figure 4d is generated instead.

8 Supported serializations: RDF/XML, Turtle, and NTriples

Linked Data Creation with ExcelRDF 5

(a) Example data for Event class/work sheet

(b) Example data for RealEstate class/work sheet

example:Event1 a rec:Event;
 rec:associatedWithDevice example:Thermometer1;
 rec:eventMeasurementUnit example:C;
 rec:eventQuantityKind example:Temperature;
 rec:hasStartTime "20200305T15:58:30Z"^^xsd:dateTime;
 rec:hasStopTime "20200305T15:58:30Z"^^xsd:dateTime.

(c) RDF generated from data in Figure 4a

example:JU-Campus a rec:RealEstate;
 rec:hasRealEstateComponent [
 a rec:RealEstateComponent ;
 rdfs:label "JU Building E (School of Engineering)”^^xsd:string].

(d) RDF generated from data in Figure 4b

Fig. 4: Excel and generated RDF data

4 Discussion and Future Work

The beauty of ExcelRDF lies in its simplicity. The tool does not purport to
enable complicated schema or data transformation scenarios; it simply provides
a round-trip translation from ontology to spreadsheet and back to RDF graph.
This enables data owners to maintain and user their existing Excel-based tools or
workflows. Since the RDF exporter instructions are embedded in the generated
Excel file itself, these files can be shared through the organisation and data
collated from multiple sources by users who may not have ExcelRDF installed.
And, since the RDF generation instructions are stored in a transparent manner
using Excel notes, modifying them is easy.

New features being considered for the future roadmap include:

1. Support for owl:Imports – At present, the tool only operates on an ontology
file loaded from disk. Adding imports resolution (possibly over the Internet)
adds significant complexity, and arguably, an ontologist could anyway inte-
grate imports in a pre-processing step, e.g., using Protégé. That said, as an
optional feature, imports support may be very useful.

2. Pre-loading A-box from ontology – The tool ignores any A-box entities (i.e.,
owl:NamedIndividual) in the imported ontology. In some use cases it is use-
ful to have a base set of individuals already in the ontology; I am considering
how they should be represented in the generated Excel file.

6 K. Hammar

3. Type checking of values – The tool does not validate that the types of values
provided in cells are correct with regard to the rdfs:range of the column’s
underlying property. Such checking should raise an error if, for instance, the
user has entered a string in a cell that should generate an XSD integer object.

Additionally, while ExcelRDF has been used successfully in the Building
Knowledge project, it has not been rigorously evaluated in a more formal setting;
this remains to be done in the near future.

Finally, it should be noted that since ExcelRDF is based on the VSTO archi-
tecture, it will run only on Excel for Windows. Microsoft provides an alternate
add-in-architecture that is platform-agnostic, based on web technologies; but
since ExcelRDF depends on .NET-based libraries this architecture has until re-
cently not been available to use. However, with the uptake of WebAssembly, it
may in the not so distant future be possible to compile those .NET libraries
into WASM that can be executed in a web environment, in which case Excel-
RDF could certainly be re-engineered to also become entirely platform-agnostic,
running anywhere Excel runs (including in the browser, on macOS, iOS, etc).

References

1. Bizer, C., Seaborne, A.: D2RQ – Treating Non-RDF Databases as Virtual RDF
graphs. Poster at the 3rd International Semantic Web Conference, Hiroshima, Japan
(November 2004)

2. Das, S., Sundara, S., Cyganiak, R.: R2RML: RDB to RDF Mapping Language.
https://www.w3.org/TR/r2rml/ (September 2012)

3. Hammar, K., Wallin, E.O., Karlberg, P., Hälleberg, D.: The RealEstateCore Ontol-
ogy. In: The Semantic Web – ISWC 2019. pp. 130–145. Springer (October 2019),
http://dx.doi.org/10.1007/978-3-030-30796-7_9

4. Langegger, A., Wöß, W.: XLWrap – Querying and Integrating Arbitrary Spread-
sheets with SPARQL. In: International Semantic Web Conference. pp. 359–374.
Springer (October 2009), https://doi.org/10.1007/978-3-642-04930-9_23

5. Lohmann, S., Negru, S., Haag, F., Ertl, T.: Visualizing Ontologies with VOWL.
Semantic Web 7(4), 399–419 (2016), http://dx.doi.org/10.3233/SW-150200

6. Maguire, E., González-Beltrán, A., Whetzel, P.L., Sansone, S.A., Rocca-Serra, P.:
OntoMaton: a Bioportal powered ontology widget for Google Spreadsheets. Bioinfor-
matics 29(4), 525–527 (2013), https://doi.org/10.1093/bioinformatics/bts718

7. Shimizu, C., Hammar, K.: CoModIDE – The Comprehensive Modular Ontology
Engineering IDE. In: ISWC 2019 Satellites. CEUR Workshop Proceedings, vol. 2456
(October 2019), http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-46397

8. Tudorache, T., Nyulas, C., Noy, N.F., Musen, M.A.: WebProtégé: A collaborative
ontology editor and knowledge acquisition tool for the Web. Semantic web 4(1),
89–99 (2013), http://dx.doi.org/10.3233/SW-2012-0057

9. Wolstencroft, K., Owen, S., Horridge, M., Krebs, O., Mueller, W., Snoep, J.L.,
du Preez, F., Goble, C.: RightField: embedding ontology annotation in spread-
sheets. Bioinformatics 27(14), 2021–2022 (2011), https://doi.org/10.1093/

bioinformatics/btr312

https://www.w3.org/TR/r2rml/
http://dx.doi.org/10.1007/978-3-030-30796-7_9
https://doi.org/10.1007/978-3-642-04930-9_23
http://dx.doi.org/10.3233/SW-150200
https://doi.org/10.1093/bioinformatics/bts718
http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-46397
http://dx.doi.org/10.3233/SW-2012-0057
https://doi.org/10.1093/bioinformatics/btr312

