
Pini Language and PiniTree Ontology Editor:

Annotation and Verbalisation for Atomised Journalism

Guntis Barzdins
1,2,3

, Didzis Gosko
1,3

, Karlis Cerans
1
, Oskars F.Barzdins

3
, Arturs

Znotins
1
, Paulis F.Barzdins

1
, Normunds Gruzitis

1
, Mikus Grasmanis

2
, Janis Barzdins

1
,

Uldis Lavrinovics
2
, Sinty K.Mayer

3
, Intars Students

2
, Edgars Celms

1
, Arturs Sprogis

1
,

Gunta Nespore-Berzkalne
1
, Peteris Paikens

1

1 Institute of Mathematics and Computer Science, University of Latvia, Riga, Latvia

{guntis.barzdins, didzis.gosko, karlis cerans}@lumii.lv
2 LETA, Marijas street 2, Riga, Latvia

3 PiniTree, EU

Abstract. We present a new ontology language Pini and the PiniTree ontology

editor supporting it. Despite Pini language bearing lot of similarities with RDF,

UML class diagrams, Property Graphs and their frontends like Google

Knowledge Graph and Protégé, it is a more expressive language enabling

FrameNet-style natural language annotation for Atomised journalism use case.

Keywords: ontology languages and editors, natural language processing

1 Introduction

We address the problem of describing real-life situations (facts about past, Atomised

news [1]) in a formal language close to natural language and easily understandable by

the domain experts and end users.

The primary construct necessary in such descriptions is a subject-predicate-object

relation, with a possibility to add secondary property-value pairs to the relation.

Basic RDF [3] modelling of this would involve creating a resource for the relation

fact, thus bringing the data model far from the linguistic representation.

UML [2], Property Graph [4] and RDF* [8] notations allow for direct property as-

criptions to the links (statements in the case of RDF*) in the data model, however,

with certain limitations:

- UML, by its design philosophy, allows only one link for a link type (an asso-

ciation class) between an object pair (cf. [2], p. 438),

- Property Graphs allow only scalar values as link attributes, and

- RDF* aggregates all annotations on a subject-predicate-object triple together,

thus also excluding several same-predicate links between the same objects.

This paper proposes a new Pini language with sentences and paragraphs close to

the natural language and a simple data model resembling Wikidata predecessor

graphd [9] that do not suffer from the abovementioned data model limitations.

mailto:cerans%7d@lumii.lv

Requirements for the Pini language come from the real-world text modelling expe-

rience [7] with the Berkeley FrameNet [6]; the novelty here is to define two frame

elements for each considered frame as the subject and object; the other frame ele-

ments become secondary properties of the main subject-frame-object relation.

The Pini language is implemented in the PiniTree editor (available at pinitree.com)

tested on LETA News Agency and BBC use-cases – CV extraction from a news ar-

chive [7], and Atomised journalism [1] – and demonstrated in this paper.

2 Pini Language

The Pini language can represent knowledge about a wide range of domains. The basic

element of the Pini language is a Pini entity, which represents a discrete object with

well-defined boundaries and identity in the physical or imagined world [2, p.442].

The Pini entity has three attributes: type, lexical name and GUID represented as:

[(type) LexicalName (GUID)]

The type denotes a class to which the Pini entity belongs, such as person, organiza-

tion, place, relation. It helps disambiguating the lexical name of the Pini entity, as

“Paris” could be either a location or a person name.

The lexical name is a canonical name by which the Pini entity could be referenced

in natural language, for example Peter, Nokia, Finland, located_in.

The GUID values are globally unique random identifiers (unlike the globally coor-

dinated URIs for resource identification) by which Pini entity is uniquely referenced.

Pini entities are subdivided into item entities and link entities. Item entities exist on

their own and they represent objects like Finland and Nokia. Link entities represent a

concrete relationship between two other Pini entities, as, e.g., in the Pini triples:

<[(org) Nokia (…)], [(relation) located_in (45af23…)], [(place) Finland (…)]>

<[(org) Ericsson (…)], [(relation) located_in (7e53b4…)], [(place) Sweden (…)>

Note that although the relation lexical name “located_in” is the same in both ex-

amples, these relations are different Pini entities since their GUIDs are different.

The Pini triple is an ordered list of three Pini entities referred to as <subject, predi-

cate, object> respectively, where the predicate must be a link entity and the object

must be an item entity (the subject can be either an item entity or a link entity).

The Pini ontology is a set of Pini triples, where every link entity appears as a pred-

icate in exactly one Pini triple. A Pini ontology can be visualized as a graph in which

all Pini entities with the same GUID are collapsed in the same node (cf. Fig.1).

Pini sentence is a fragment of the Pini ontology starting with a single Pini triple

<[subject-entity], [predicate-entity], [object-entity]>

and it includes all secondary Pini-triples in which the above predicate-entity shows up

as the subject entity. With well-chosen lexical names such Pini sentences easily map

to a natural language sentence such as “Steve Jobs wife was Laurene Powell and they

married in 1991 at Yosemite National Park.” (see Fig.2).

The Pini paragraph is a set of all Pini sentences sharing the same focus-entity (see

Pini paragraph for the focus-entity Steve Jobs in Fig.2).

Pini literal is syntactic sugar for self-describing item entities appearing only in the

object of some Pini triple, like “184cm” in:

<[(person) Peter (…)], [(relation), height, (4bv15f…)], [(literal) 184cm (…)]>

Pini literals can be included in the lexical name of the relation to omit the object:

<[(person) Peter (…)], [(relation), height:184cm, (4bv15f…)], - >

Pini literals are depicted light blue in Fig.1 and Fig.2.

Fig. 2. Pini ontology fragment in the PiniTree ontology editor.

Fig. 1. Example Pini ontology. Note two separate triples <Steve Jobs, owned, Apple> with

different attributes.

share

share

 (Person)
Steve Jobs

"ce1c0769"

1991

time (wedding)

(Being_born)
being_born

"c611ec05"

(Time)
1955

"7eab1f8c"

place (wedding)
place

 (Location)
San Francisco

"5befce19"

 (Person)
Laurene Powell
"196b7743"

(Possession)
owns

"213b0716"

time (introduced)

time

11%

2014

100%

place (introduced)

(Personal_relationship)
friend

"a06f505b"
 (Person)
Steve Wozniak
"fc5cf30d"

1971

share

1980time

 (Organization)
Beats Electronics
"af468500"

(Possession)
owned

"acd305fb"

 (Organization)
 Apple

"169610d4"

(Possession)
owned

"1877e89a"
time 1985

1 share (Possession)
owned

"acd305fb"

(Possession)
 owns

"39086c46"

8.7%share

time 1980

 (Location)
Yosemite National

Park

 (Organization)
 Siri

"9bad..."

(Personal_relationship)
 wife

"c10b3ecb"

3 PiniTree Ontology Editor

PiniTree is an editor implementing the Pini language for the Atomised journalism

use-case. As shown in Fig.2 it has two distinct panes: the right pane is the Pini ontol-

ogy editor and the left pane is the Atomised journalism workbench. The left pane

displays Pini documents (text with images) resembling Wikipedia articles while the

right pane allows navigating and editing the ontology resembling DBpedia. But unlike

DBpedia, which integrates with Wikipedia only on the article level, PiniTree editor

integrates the Pini ontology and Pini documents on the word and sentence level by

means of Pini mentions.

Pini mention is a feature of the PiniTree editor enabling referencing Pini document

segments from Pini entities as a source of attribution – a grounding feature missing

e.g. in Google Knowledge Graph [5]. Pini documents are accumulated as read-only

objects in the PiniTree editor and are assigned a unique Pini item (GUID 613b60a1…

in Fig.2) holding the document metadata. Document GUIDs along with the segment

offset serve as the Pini mention target. Besides manual disambiguated entity mention

annotation assisted through the entity spelling aliases, the PiniTree editor also sug-

gests entity mentions similarly to Google search using neural contextual word embed-

dings and neural face recognition. Link entities are suggested based on frequently co-

occurring neighbouring item entities (e.g. “Disney” in Fig.2). GUIDs and aliases ra-

ther than Wikipedia page names stimulate broad synset use as Pini entities.

Pini ontology editor in the right pane assumes that human perception of the Pini

ontology naturally is based on sequential navigation through the neighbouring Pini

paragraphs. A Pini paragraph is the unit of information one can perceive simultane-

ously as the episodic memory. Navigating through Pini paragraphs forms a linear

history of focus-entities in the short-term memory to be re-accessed easily.

The Pini ontology graph in Fig.1 can’t deliver this experience as in real applica-

tions it may become very large and incomprehensible. Instead the PiniTree editor

represents Pini paragraphs as illustrated in Fig.2. It supports navigation between the

Pini entities by clicking on them like in a web browser; unlike the browser “back”

button the entire browsing history is accessible at the top-right pane. The browsing

history often resembles a short story and can be saved in a new Pini document as the

blue-print for the Atomised journalism output.

4 Adding Structure to the Pini Language

The Pini ontology in Fig.1 and Fig.2 is easily understandable because it has clear

structure. There are many ways to structure a Pini ontology – e.g., an alternative Pini

structure equivalent to Google Knowledge Graph [5] or Wikipedia infoboxes is illus-

trated in Fig.4. But for journalistic use-cases we need more granular n-ary relations

better captured by the Berkeley FrameNet (see Frame example in Fig.3a) requiring

full Pini language expressivity for secondary attributes (see SanFrancisco in Fig.2).

The visualisation and editing in the PiniTree editor is universal and supports infobox

and FrameNet structuring, as well as unstructured “linked data” approaches.

Fig. 3. Frames in PiniTree: FrameNet notation (a) and Pini frame notation (b).

We define a Pini frame to be a FrameNet frame in which two frame-elements are

identified as a binary subject-predicate-object core association, where predicate type

is the frame-name. Other frame-elements attach to the predicate of the core associa-

tion as subject – these we will regard as secondary roles (see Fig.3b). Pini sentences

are instances of such Pini frames. Formally, a Pini frame is a Pini ontology with the

meta-types Class and Association. Pini frames constitute the terminological part of

the Pini ontology and are stored in the separate Ontology meta-type used by PiniTree

editor to soft-constrain the regular Pini entity types.

Fig. 4. PiniTree view of the Google Knowledge Graph or WikiPedia infobox data.

The example ontology in Fig.1 and Fig.2 uses Pini frames derived from the corre-

sponding FrameNet frames: Possession, Personal_relationship, and Being_born. The

core association among the roles constituting the frame is identified by studying the

syntactic realization and valence patterns of the frame, which are part of the Frame-

Net dataset derived from large manually annotated text corpora.

5 Discussion and Conclusions

The three FrameNet frames used in above example are insufficient for the LETA and

BBC use-cases. In the LETA use-case [7] we found that seven FrameNet frames Be-

ing_born, Death, Personal_relationship, Education_teaching, Being_employed,

Membership, Possession are sufficient for their use-case of extracting politician CVs

from their news archive. On top of these 7 frames the BBC Atomised journalism use-

case [1] also requires Participation and Statement frames, as daily news typically

revolve around events and their participants along with any notable statements made

by political influencers.

a) b)

Possession
Owner

Property

Time

Share

(Association)
possession

"......"

 (Class)
Organization
"......"

 (Class)
Person OR
Organization
"......"

(Association)
time

"......"

(Class)
Literal

(Association)
share

"......"

(Class)
Literal

owner

property

time

share

Fig. 5. Pini WoIB structure and end user view resembling Wikipedia page preview popup.

The end user Web of infoboxes (WoIB) view in Fig.5 illustrates the Pini enriched web

page with navigation popup resembling a Wikipedia page preview with the Pini in-

fobox and mentions. We are optimistic that the described approach can be further

extended with neural question answering [10] and reasoning.

Acknowledgments. The research leading to these results has received funding also

from the ERDF project 1.1.1.1/18/A/045 at IMCS, University of Latvia, and from the

project "Competence Centre of Information and Communication Technologies" of EU

Structural funds, No. 1.2.1.1/18/A/003, Research No. 2.4 "Platform for the semanti-

cally structured information extraction from the massive Latvian news archive".

References

1. Rhianne, J. and Bronwyn Jones, J.: Atomising the News: The (In)Flexibility of Structured

Journalism. Digital Journalism, Vol.7(8), 1157-1179 (2019).

2. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference Manu-

al. 2nd edn. Addison-Wesley (2005).

3. Resource Description Framework (RDF), http://www.w3.org/RDF, last accessed

2020/05/05.

4. Robinson, I., Webber, J., Eifrem, E.: Graph Databases. O’Reilly Media, (2013).

5. Google Knowledge Graph, https://developers.google.com/knowledge-graph, last accessed

2020/05/05

6. Fillmore, C.J., Johnson, C.R., Petruck, M.R.L.: Background to FrameNet. International

Journal of Lexicography, Vol.16, 235-250 (2003)

7. Barzdins, G., Gosko, D., Rituma, L., Paikens, P.: Using C5.0 and Exhaustive Search for

Boosting Frame-Semantic Parsing Accuracy. In: LREC2014, pp. 4476-4482 (2014).

8. Hartig, O.: Reconciliation of RDF* and Property Graphs. In: arXiv:1409.3288, (2014).

9. FreeBase graphd Repository, https://github.com/google/graphd, last accessed 2020/05/05

10. Dhingra, B., et al.: Differentiable Reasoning over a Virtual Knowledge Base. ICLR (2020)

http://www.w3.org/RDF
https://developers.google.com/knowledge-graph

