
CoMerger : A Customizable Online Tool for
Building a Consistent Quality-Assured Merged

Ontology

Samira Babalou* ID 1, Elena Grygorova ID 1, Birgitta König-Ries ID 1 2

1Heinz-Nixdorf Chair for Distributed Information Systems
Institute for Computer Science, Friedrich Schiller University Jena, Germany

2Michael-Stifel-Center for Data-Driven and Simulation Science, Jena, Germany
{samira.babalou,elena.grygorova,birgitta.koenig-ries}@uni-jena.de

Abstract. Merging ontologies enables the reusability and
interoperability of existing knowledge. With growing numbers of
relevant ontologies in any given domain, there is a strong need for
an automatic, scalable multi-ontology merging tool. We introduce
CoMerger, which covers four key aspects of the ontology merging field:
compatibility checking of the user-selected Generic Merge Requirements
(GMR)s, merging multiple ontologies with adjustable GMRs, quality
assessment of the merged ontology, and inconsistency handling of the
result. CoMerger is freely accessible through a live portal and the
source code is publicly distributed.

Keywords: Multiple ontology merging . Generic Merge Requirements .
Ontology quality assessment . Ontology inconsistency

1 Introduction

Ontology merging is needed for many Semantic Web applications from a wide
variety of domains. Therefore, there is a strong need for efficient, scalable, and
customizable ontology merging tools. This has resulted in the development of
several merging tools, including [1–6]. However, none of them meets all three
requirements: methods in [2–6] are restricted to merging two ontologies at a time
and are thus not sufficiently scalable. A set of pre-defined merge requirements
is implemented in [5, 6] and thus they lack customization. Approaches in [1–5]
lack the ability for users to assess the quality of the merged results and do not
provide inconsistency handling. Lastly, to the best of our knowledge, none of
them are available as web-based applications.

We propose CoMerger as a first step towards a comprehensive merging
tool focussing on four important aspects: (i) compatibility checking of the
user-selected Generic Merge Requirements (GMR)s [7], (ii) merging multiple
ontologies with adjusting a set of user-selected GMRs [8], (iii) assessing the
quality of the merged ontology [9], and (iv) inconsistency handling of the
result [10]. This paper presents the architecture of CoMerger tool and the
interaction between the mentioned aspects.

https://orcid.org/0000-0002-4203-1329
https://orcid.org/0000-0002-3358-1417
https://orcid.org/0000-0002-2382-9722

SPARQL Endpoint

Single
Query
Viewer

Query Engine

OMOi

Query
Comparison

Viewer

Query Catalogue

Compatibility Checker

GMR CatalogueMap

OM

Oi

Result

Compatibility
Checker Engine

User Selected
Parameters

User Level

System Level

Adjusted
Parameters

Result

Merge Engine

Consistency
Handling Engine

Evaluator Engine

Source
Ontologies

Mapping

Merged
Ontology

Query Engine

Compatibility
Checker
Engine

Merged
Ontology

GMR Catalogue

Overall Architecture Evaluator

Result

User evaluation criteria

Evaluator Engine

Map

OM

Oi

Consistency Checker

Revise Plan Generator

Apply plan

Consistency
Handling Engine

OMOi

Ontology Merger

Correspondences
Finder

Merge Engine

MappingSource Ontologies

Ontology
Parser

Mapping
Parser

Output Generator

Mapping
User Selected
Refinements

GMR Catalogue

Fig. 1: CoMerger architecture and components.

2 Tool Overview

Fig. 1 shows the architecture of CoMerger components and the interaction
between them in distinct boxes. The Overall Architecture, the left most box in
Fig. 1 depicts the data flow between the CoMerger components, in two levels.
The user level allows a user to interact with the tool through a friendly GUI. In
the system level, the communication between the components is sketched. The
user uploads a set of source ontologies alongside with the respective mappings1.
If no mapping is given, CoMerger automatically detects the correspondences
by using embedded ontology matching methods2. Moreover, the user is able to
select from a set of twenty Generic Merge Requirements (GMR)s, including,
e.g., entities preservation, one type restriction, acyclicity, and connectivity. The
Compatibility Checker engine determines whether it is possible to simultaneously
meet all requirements or there are contradictions. For instance, one may want
to preserve all classes from the source ontologies in the merged ontology. On
the other hand, one could wish to achieve class acyclicity. Likely, these goals
conflict. The engine suggests a compatible subset of the GMRs given by the user.
After parsing the source ontologies and their mappings, the merged ontology
is automatically generated via the Merge engine by taking into account the
user-selected GMRs.

Afterwards, the quality of the merged ontology can be evaluated via the
Evaluator engine according to the user-selected evaluation aspects. Furthermore,
there is a possibility to evaluate the quality of any given merged ontology
independent of the merge process via a separate interface, Evaluator. Besides
the quality criteria, the Consistency Handling engine can validate whether
the merged result is consistent and provide support in repairing any issues.

1 The tool can read a set of RDF alignment type, containing the similarity relations
between entities with at least a given similarity value.

2 Currently, two ontology matching approaches are embedded in our tool: SeeCOnt
method [11] and a string matching based on the Jaccard similarity coefficient [12].

Additionally, through the embedded SPARQL endpoint of the Query engine,
the user is able to compare query results on the merged and source ontologies.
In the following, we describe the main components of Fig 1 in more detail.

2.1 Compatibility checker: A graph-based theory method

GMRs are a set of Generic Merge Requirements that the merged ontology is
expected to achieve. The tool enables the flexible ontology merging process,
in which the users can adjust a set of GMRs. However, not all GMRs are
compatible. Thus, the compatibility checker component in CoMerger verifies
which GMRs can be met simultaneously. We utilized a graph-theory based
method to capture the maximal compatible superset of user-selected GMRs.
Our embedded twenty GMRs with the compatibility checker method have been
presented in [7]. Up to now, it is not possible to extend the list of GMRs. Since
this list covers all requirements towards merged ontologies mentioned in the
literature, we believe that it is unlikely that the need will arise. Should that be
the case, the tool could be adapted.

2.2 Ontology Merger: A partitioning-based approach

Our proposed merge method takes as input a set of source ontologies alongside
the respective mappings and automatically generates a merged ontology. At first,
the n (n ≥ 2) source ontologies are divided into k (k << n) blocks and a local
refinement is applied to them. After that, the blocks are combined to produce
the merged ontology followed by a global refinement. The user can adjust a set
of refinement operations via the embedded GMRs. Moreover, the tool logs the
knowledge-level of the ontology merging process and the refinement operations,
which can be further analyzed by the users. The whole underlying merge method
is described in [8] and evaluated on various datasets. We compared the efficiency
of our single step merged method with a series of pairwise merges. The results3

demonstrate the high performance and quality of our method.

2.3 Evaluator: Quality assessment of the merged ontology

The merged ontology plays a central role in a variety of Semantic Web
applications. Thus, prior to its usage, the quality and correctness of the merged
ontology should be assessed. We provided a comprehensive set of evaluation
criteria [9] to cover a variety of characteristics of each individual aspect of the
merged ontology in three dimensions: (1) structural criteria via the evaluation of
the General Merge Requirement (GMR)s, (2) functional measurements by the
intended use and semantics of the merged ontology, and (3) usability-profiling
evaluation on ontology and entity annotation. Our evaluation criteria also
represent an analytic view on how well the created merged ontology reflects the
given source ontologies. Evaluating the merged ontology can be performed even
independently of the merge method by the separated interface in CoMerger.

3 https://github.com/fusion-jena/CoMerger/blob/master/MergingDataset/result.md

2.4 Consistency checker: A Subjective Logic-based approach

The merged ontology should be free of any inconsistencies. However, since the
encoded knowledge of source ontologies may model different world views, it can
easily happen that the merged ontology is inconsistent. It needs to be resolved
if one wants to make use of the merged ontology in further applications. Thus,
we developed a Subjective Logic-based method in [10] to rank the conflicting
axioms, which caused inconsistencies in the merged ontology. The rank function
concerns the degree of trustworthiness of the source ontologies knowledge. Upon
that, the tool suggests the remedies of changes such as deleting or rewriting
a part of conflicting axioms to turn the inconsistent merged ontology into a
consistent one. The whole process can be accomplished automatically, or a user
can review the system’s suggestions and make necessary changes before applying
them.

3 Demonstration

In this demo4, visitors will be able through our friendly GUI (see Fig. 2) specify
requirements, ask for their compatibility, obtain suggestions for compatible
subsets and a possible suggest compatible set, perform merge obeying the
requirements, analyze the quality of the merged result w.r.t. their selected
evaluation aspects, and check for consistency of the merged ontology. Users
can save the merged ontology and the evaluation’s results. For each selected
evaluation criteria, they will receive the detailed result of the evaluation, as
shown in Fig. 3. We will provide users with example ontologies, but they are
also welcome to explore the tool with their own source ontologies. If interested,
users can also directly access the source code, which is publicly available5 and
distributed under an open-source license. Our web-based application is supported
by many modern web browsers. The host server (VM) for the tool includes 8
cores with CPU 2.39 GHz and 16 GB RAM. The processing time based on the
size and number of source ontologies is reasonable. For instance, merging 17
ontologies with 51461 axioms took 140 seconds with a home internet (44 Mbps
speed) in the Firefox 72.0.2 web browser. Users can opt for a local installation
of the tool to omit delays due to network communication. We performed an
experimental test on a local machine with Intel core i7 with 12 GB internal
memory on Windows 7 with Java compiler 1.8. For 7, 22, 55 source ontologies
with 3037, 56893, 158567 axioms, the merge method performs in 1.8, 62.3, 150.7
seconds, respectively. This demonstrates that the merge method in this tool
scales well in the number and size of the source ontologies.

4 Related Work

Ontology merging has attracted considerable attention within the research
community. Chiticariu et al. [1] proposed a method to enumerate multiple

4 http://comerger.uni-jena.de/
5 https://github.com/fusion-jena/CoMerger

Fig. 2: Ontology merging GUI.

Frequency

Metric Description

Ontology Entities
Affected

Evaluation Aspect

Repair Option

Metric‘s Name

Fig. 3: Result of merge and evaluation.

integrated schemas from a set of source schemas by considering all possible
choices of merging concepts. GROM [2] uses typed graph grammars with
algebraic graph transformations. iPrompt [6] is an interactive ontology merging
tool introduced as the Protégé-based implementation. This system leads users
to perform merge by suggesting what should be merged. HSSM [3] generates the
formal context for the source ontologies and merge the similar concepts within
the built concept tree. GCBOM [4] applies the granular computing processes
in order to produce the final merged ontology. ATOM [5], at first, creates an
intermediate merged result, then refines it based on some of GMRs.

Despite the effort of many research studies, the developed ontology merging
systems still suffer specific problems. In [1,6], many user interactions are required,
which might not be feasible for large-scale ontologies. iPrompt [6] requires user
interaction for all entity merging, and in [1], the enumerated schemas should be
manually refined by users. To scale to many sources, the merging systems in [2–6]
are insufficient due to merging only two ontologies at a time. No inconsistency
handling is provided in [1–5]. In [5, 6], a set of fixed GMRs is implemented
without user customization. To the best of our knowledge, besides iPrompt, the
other mentioned systems are not publicly accessible and reproducible. Moreover,
none of them are available as a web-based application.

5 Future Work

In our future work, we plan to extend CoMerger with respect to several
dimensions: First, we will integrate the possibility to evaluate against a set of
Competency Questions in the functional dimension to facilitate many use-case
scenarios. Second, embedding other existing matchers in our tool and evaluating
the source ontologies before the merge process might give a useful insight to the
users. Finally, we plan a user study to evaluate the ease-of-use.

Acknowledgments

S. Babalou is supported by a scholarship from German Academic Exchange
Service (DAAD).

References

1. L. Chiticariu, P. G. Kolaitis, and L. Popa, “Interactive generation of integrated
schemas,” in ACM SIGMOD, pp. 833–846, 2008.

2. M. Mahfoudh, L. Thiry, G. Forestier, and M. Hassenforder, “Algebraic graph
transformations for merging ontologies,” in MEDI, pp. 154–168, Springer, 2014.

3. M. Priya and A. K. Ch, “A novel method for merging academic social network
ontologies using formal concept analysis and hybrid semantic similarity measure,”
Library Hi Tech, 2019.

4. M. Priya and C. A. Kumar, “An approach to merge domain ontologies using
granular computing,” Granular Computing, pp. 1–26, 2019.

5. S. Raunich and E. Rahm, “Target-driven merging of taxonomies with atom,” Inf.
Syst., vol. 42, pp. 1–14, 2014.

6. N. F. Noy and M. A. Musen, “The prompt suite: interactive tools for ontology
merging and mapping,” IJHCS, vol. 59, no. 6, pp. 983–1024, 2003.

7. S. Babalou and B. König-Ries, “GMRs: Reconciliation of generic merge
requirements in ontology integration,” In SEMANTICS Poster and Demo., 2019.

8. S. Babalou and B. König-Ries, “Towards building knowledge by merging
multiple ontologies with CoMerger: A partitioning-based approach,”
http://arxiv.org/abs/2005.02659.

9. S. Babalou, E. Grygorova, and B. König-Ries, “How good is this merged
ontology?,” in In 17th Extended Semantic Web Conference (ESWC’20), Poster
and Demo Track., June, 2020.

10. S. Babalou and B. König-Ries, “A subjective logic based approach to handling
inconsistencies in ontology merging,” in OTM, Springer, 2019.

11. A. Algergawy, S. Babalou, M. J. Kargar, and S. H. Davarpanah, “Seecont: A new
seeding-based clustering approach for ontology matching,” in ADBIS, pp. 245–258,
2015.

12. P. Jaccard, “Étude comparative de la distribution florale dans une portion des
alpes et des jura,” Bull Soc Vaudoise Sci Nat, vol. 37, pp. 547–579, 1901.

	CoMerger: A Customizable Online Tool for Building a Consistent Quality-Assured Merged Ontology

