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Abstract. Neural networks have achieved in recent years human level perfor-
mance in various application domains, including critical applications where ac-
countability is a very important issue, closely related to the interpretability of
neural networks and artificial intelligence in general. In this work, an approach
for defining the structure of neural networks based on the conceptualisation and
semantics of the application domain is proposed. The proposed approach, called
Semantic Artificial Neural Networks, allows dealing with the problem of inter-
pretability and also the definition of the structure of neural networks. In addition,
the resulting neural networks are sparser and have fewer parameters than typical
neural networks, while achieving high performance.

1 Introduction

Neural networks have been an important machine learning method for many decades
but impressive results in recent years have brought them to the spotlight of artificial
intelligence (AI) research and the wider discussion around AI’s impact in society. Since
AI is applied on critical domains, interpretability, accountability and legal compliance
become significant requirements. Although neural networks achieve impressive per-
formance, they are problematic with respect to these requirements and are commonly
characterised as a “black box” approach [2]. Instead, interpretable machine learning ap-
proaches can be employed, such as linear and logistic regression, Bayes classifiers and
decision trees [3]. These approaches are often efficient but not always as performing as
non-interpretable ones, such as Support Vector Machines and neural networks. Extract-
ing interpretation rules from noisy data when employing machine learning is also an
alternative approach [4], applied after the creation of a neural network.

In this work, a knowledge graph based approach is proposed for achieving inter-
pretability as in regression methods, while still employing neural networks and thus
taking advantage of related work and advances (e.g. in deep learning) in this very pro-
lific research area. The main idea, presented in detail in Section 2, is to construct the
network in such a way that dataset features correspond to inputs and outputs, and the
nodes of hidden layers correspond to concepts associated with inputs and outputs in a
domain conceptualisation represented in graph form.
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Algorithm 1 Semantic Artificial Neural Networks Construction
Require: Dataset D,
Require: Ontology (Domain Conceptualization) O
1: Create empty Neural Network Graph G
2: for all output features oj ∈ D do
3: Map oj ∈ D to concepts or attributes coj ∈ O
4: Add corresponding coj ∈ O into G
5: end for
6: for all input features ij ∈ D do
7: Map ij ∈ D to concepts or attributes cij ∈ O
8: Add corresponding cij ∈ O into G
9: end for

10: while ∃ coj ∈ G not connected to cij ∈ G do
11: for all nodes cj ∈ G do
12: Find concept(s) ck ∈ O connected to node(s) cj ∈ G
13: Add node(s) ck in G
14: Add arc(s) connecting cj , ck
15: end for
16: end while
17: return Graph G

2 Semantic Artificial Neural Networks

The proposed method is based on the construction of a neural network by mapping
its structure to an existing or purposely created conceptualisation or ontology in graph
form, containing definitions of inputs and outputs of the neural network. Dataset fea-
tures that correspond to the nodes of the input and output layers of the neural network
are mapped to ontology concepts and attributes. Additional concepts within the ontol-
ogy form the hidden layers of the neural network. This is based on the observation
that both ontologies and neural networks are represented using a graph structure. This
allows neural network nodes to be mapped to concepts and their properties in the ontol-
ogy. If properly constructed, the semantics of nodes in the resulting Semantic Artificial
Neural Network (SANN) can be determined directly.

The dataset to analyse and the corresponding domain conceptualisation are neces-
sary in order to construct an SANN. Specifically, the dataset consists of samples and
a set of features D. The conceptualisation or ontology O consists of a set of nodes
V corresponding to features/attributes and a set of edges E connecting related con-
cepts/attributes in V . All features in D correspond to nodes in V . Notice that, instead
of using existing conceptualisations and ontologies, users can develop task-specific on-
tologies when defining the structure of the neural network. The SANN construction
process is shown in Algorithm 1 and is defined as follows: given a conceptualisation
or an ontology graph O, the properties corresponding to the output features in D are
mapped to an output layer node in the neural network G (lines 2-5). Input properties in
D correspond to input layer nodes in G (lines 6-9) and intermediate nodes appearing in
the path between input and output in G form the hidden layers (lines 10-16).
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The proposed SANN approach can be applied even when a formal domain ontology
is not available. In this case the structure can defined using methods as in knowledge
engineering, based on the stakeholders’ understanding and conceptualization of the do-
main and an analysis of related concepts. This can be achieved by slightly modifying
Algorithm 1, specifically lines 3, 7 and 12: instead of mapping dataset features to ontol-
ogy concepts or attributes, such concepts or attributes have to be defined. We expect that
defining the network structure is a simpler task compared to a typical knowledge engi-
neering task, because network inputs and outputs are given in advance in the form of
dataset features. Thus, it is only necessary to define concepts connecting or associating
inputs with outputs, instead of creating a complete domain conceptualisation.

3 Evaluation

In this section the performance of SANNs is compared with that of typical dense neu-
ral networks. Several diverse datasets are used for comparison for both classification
and regression tasks. Specifically, ten datasets covering diverse domains are used (8 of
which are from the UCI machine learning collection [1]), with five datasets used for
classification and five for regression. The classification datasets are: UCI diabetes [6]3,
UCI heart disease4, UCI Iris5, UCI credit card default6 and the prostate cancer dataset7.
For regression the datasets are: UCI Auto-mpg 8, UCI wine quality9, UCI real estate
valuation10, UCI Istanbul stock exchange11 and the graduate admissions dataset12. Min-
max normalization was performed on all input features in the datasets.

We present indicatively the SANN created for the UCI diabetes dataset [6] by com-
bining lexical description of inputs and DBpedia concepts. Note that similar SANNs
have been created for all 10 datasets but are not shown here due to space limitations.
The UCI diabetes dataset contains the following 8 attributes: number of times preg-
nant (preg), plasma glucose concentration after 2 hours in an oral glucose tolerance
test (plas), diastolic blood pressure in mm Hg (pres), triceps skin fold thickness in mm
(skin), 2-hour serum insulin in mu U/ml (insu), body mass index measured as weight in
kg/(height in m)ˆ2 (mass), diabetes pedigree function (pedi) and age in years (age). The
diabetes pedigree function (pedi) provides data on diabetes mellitus history in relatives
and the genetic relationship of those relatives to the patient. Of these features preg, pedi
and age are grouped together as attributes directly associated with the person concept
in DBpedia. Skin thickness (skin) and BMI mass indicators (mass) are associated with
anatomy/physiology of the person’s body while plas, blood pressure (pres) and insul are

3 https://www.kaggle.com/uciml/pima-indians-diabetes-database
4 https://www.kaggle.com/ronitf/heart-disease-uci
5 https://www.kaggle.com/uciml/iris
6 https://www.kaggle.com/uciml/default-of-credit-card-clients-dataset
7 https://www.kaggle.com/multi8ball/prostate-cancer
8 https://www.kaggle.com/uciml/autompg-dataset/
9 https://www.kaggle.com/uciml/red-wine-quality-cortez-et-al-2009

10 https://archive.ics.uci.edu/ml/datasets/Real+estate+valuation+data+set
11 https://www.kaggle.com/uciml/istanbul-stock-exchange/
12 https://www.kaggle.com/mohansacharya/graduate-admissions
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Fig. 1. Semantic Artificial Neural Network for UCI Diabetes dataset - Classification.

attributes of a person’s blood, hence they are grouped together under the label blood.
DBpedia and Linked Open Data were used for selecting proper concepts and relations
when building the Semantic Artificial Neural Network. The resulting network is pre-
sented in Figure 1.

After constructing SANNs for all datasets, the Weka machine learning software [5]
was used for performance evaluation, based on default hyperparameters. The multilayer
perceptron implementation was used for implementing SANNs by modifying the net-
work construction phase. Specifically, instead of automatically selecting a predefined
structure (typically fully connected networks) provided by Weka, the structure is de-
fined manually for each dataset using the semantics of the related input/output features.
Apart from the definition of the network structure, all other components of the SANN
implementation are identical to those of the multilayer perceptron implementation in
Weka. In addition, for the experimental evaluation all hyperparameters of SANNs and
multilayer perceptrons were identical and set to the default hyperparameters of multi-
layer perceptrons of Weka. This ensures that the evaluation focuses on the effects of
the network topology of SANNs: all other things being equal, determine the effects in
performance of the network topology defined using Algorithm 1 and the one produced
by Weka.

The average performance over five classification and five regression experiments
for SANNs and dense multilayer perceptrons using Weka is reported in Table 1. For
classification, the performance metric is accuracy, while for regression, the performance
metric is correlation coefficient. The best performing algorithm for a given metric is
highlighted in bold.

The experiments indicated that no algorithm was dominant in terms of performance,
with dense neural networks slightly outperforming SANNs on average in case of classi-
fication and SANNs achieving better average performance in case of regression. Over-
all, the performance of SANNs compared with fully connected Neural Networks was
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Table 1. Comparison between SANNs and dense neural networks - average performance for
classification (5 datasets) and regression (5 datasets)

Dataset/Metric Multilayer perceptron Semantic Artificial Neural Network
Classification/Accuracy 81.94 81.76
Regression/Correlation coefficient 0.659 0.697

comparable if not superior on average. This is a quite positive result considering the
additional advantages afforded by SANNs: explainability, reduced number of weights
and reduced overall complexity.

4 Conclusion

In this work a novel approach for constructing neural networks, called Semantic Artifi-
cial Neural Networks, is proposed. The structure of the network reflects the conceptu-
alisation of the application domain by means of a knowledge graph with the objective
to create networks that are easy to interpret. Since lack of interpretability is a major
issue of neural networks, the proposed approach can be used to create networks where
hidden layer nodes correspond to specific concepts and have a specific meaning. In ad-
dition, the resulting networks are typically sparse and have fewer parameters, which is
typically an advantage during training. Compared with fully connected neural networks
with the same number of layers, Semantic Artificial Neural Networks are interpretable,
have fewer parameters to train and achieve comparable and, in many cases, better per-
formance.

In future work, we intend to further explore the applicability of SANNs, by also
considering the effect of selecting different conceptualisations, which, in its essence,
is a knowledge representation problem. For instance, we will compare the different
SANNs created based on generic or domain specific ontologies and complex versus
minimalist taxonomies.
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