
N3X: Notation3 with SPARQL Expressions

Matthias Farnbauer-Schmidt1[0000−0001−6858−0257], Victor
Charpenay1[0000−0002−9210−1583], and Andreas Harth1[0000−0002−0702−510X]

Friedrich-Alexander Universität Erlangen-Nürnberg,
Chair of Technical Information Systems
matthias.farnbauer-schmidt@fau.de

victor.charpenay@fau.de

andreas.harth@fau.de

Abstract. Writing calculations with many intermediate steps in No-
tation3 (N3) rules is complex and verbose. This issue is addressed by
extending N3 with SPARQL expressions. In this paper, we introduce
and evaluate the syntax of this approach, called N3X. In our examples
N3X reduces the number of triples in calculation heavy N3 rules by 30 %,
the number of triples with a math:* -predicate by 65 % and the number
of non-blank characters by 24.4 % on average.

Keywords: Notation3 · N3X · SPARQL expressions.

1 Introduction

Notation3 (N3) is a logical framework for the Semantic Web [2]. Originally de-
signed as a more readable syntax for humans (compared to RDF/XML). It also
includes N3 Logic, an extension to RDF by universally quantified variables and
quoted graphs. The latter, called formulae, allow to express statements about
graphs. Existentially quantified variables are already included in RDF as blank
nodes. The combination of quoted graphs, universally quantified variables and
the predicate log:implies enables users to express first-order logic in N3. In addi-
tion, predicates for logical relationships and for retrieving information from the
Web are given.

The serialization format Turtle, derived from N3, is nowadays widely used
to present RDF in an human-readable way. However, the adoption of N3 Logic
lags behind [1].

The adoption of the Semantic Web in the Internet of Things causes an in-
crease of numeric data in RDF graphs [5]. However, writing arithmetic calcu-
lations in N3 is cumbersome. Besides log:implies, N3 provides further built-in
predicates to perform calculations during rule evaluation. The use of predicates
dictates that for each calculation step one statement must be provided. For
complex expressions, this becomes increasingly error-prone and verbose.

In this paper we tackle this issue by extending the definition of N3 terms to
SPARQL expressions [4]. This extension, called Notation3 Expressions (N3X),
allows one to nest expressions and write less triples overall. Furthermore, this
supports N3’s objective of human-readability.

2 M. Farnbauer-Schmidt, et al.

Listing 1. Distance between two 2D points as N3 rule.

1 { ?p1 :x ?x1; :y ?y1. ?p2 :x ?x2; :y ?y2.

2 ?p1 log:notEqualTo ?p2.

3 (?x1 ?x2) math:difference ?dx.

4 (?y1 ?y2) math:difference ?dy.

5 (?dx 2) math:exponentiation ?dx2.

6 (?dy 2) math:exponentiation ?dy2.

7 (?dx2 ?dy2) math:sum ?sum.

8 ?sum math:sqrt ?sqrt. }

9 => { :result :value ?sqrt. }.

To illustrate the syntactic discrepancies between N3 and N3X we use the example
presented in Listing 1. It is a rule to calculate the distance between two points
in a 2D Cartesian coordinate system. The prefixes of cwm, a N3-engine, built-in
predicates1 math: and log: are used.

The semantics of of N3X requires little change compared to N3. In fact, every
N3X document can be translated back into N3. Formal semantics are out of the
scope of this paper.

In the next section we present alternative approaches to simplify expressions
in N3. Then, in section 3 we present the syntax of N3X. An evaluation of how
N3X affects the length of rules is given in section 4. Finally, we give a conclusion
and an outlook for N3X’s future in section 5.

2 Comparable Approaches

In fact, N3’s path syntax ! can be used to nest expressions in a similar fashion
to postfix notation. For example, line 5 of Listing 1 could be written as:

((?x1 ?x2)!math:difference 2) math:exponentiation ?dx2.

However, this contradicts the objective of human-readability, especially for deeper
nested expressions.

Another approach is implemented in the N3-engine EYE which is based on
Prolog [6]. It provides a built-in predicate e:calculate that takes an arithmetic
expression provided as string, substitutes given variables and passes this to the
underlying Prolog instance for evaluation. EYE’s test suite makes extensive use
of e:calculate in computation heavy tests. In fact, this shows that there is a need
for a more simple way to write complex expressions in N3.

3 Syntax of N3X

The syntax of SPARQL expressions is taken almost as-is in N3X, up to two
exceptions: SPARQL’s comparators = and <= are also defined in N3 as predicate

1 https://www.w3.org/2000/10/swap/doc/CwmBuiltins

https://www.w3.org/2000/10/swap/doc/CwmBuiltins

N3X: Notation3 with SPARQL Expressions 3

Listing 2. Distance between two 2D points as N3X rule.

1 { ?p1 :x ?x1; :y ?y1. ?p2 :x ?x2; :y ?y2.

2 ?p1 log:notEqualTo ?p2.

3 ?x1 - ?x2 = ?dx. ?y1 - ?y2 = ?dy. }

4 => { :result :value math:sqrt(?dx*?dx + ?dy*?dy). }.

shorthands, the comparators are replaced by == and =< respectively to avoid
ambiguity between expressions and other terms.

In fact, SPARQL’s comparison and N3’s built-in comparators overlap in their
semantics but are not the same. In SPARQL the meaning of a comparator is
defined by the values compared [4], whereas the function of N3’s comparators
only consider the lexical values of literals regardless of datatypes1. The alignment
of both is a matter for future improvements.

The translation of the example in Listing 1 to N3X is shown in Listing 2. The
number of triples is reduced from 12 to 8 (-33 %) and the number of non-blank
characters is reduced from 242 to 126 (-48 %).

In Listing 2 the triples using predicates from the math: namespace are rewrit-
ten to N3X expressions. Instead, of using a math:* -predicate to create a new
variable binding N3’s shorthand = for owl:sameAs is used. In this context, N3
creates a binding to ?dx (or ?dy) with the evaluation’s result of the left-hand
side expression.

4 Evaluation

We used EYE’s test suite2 to evaluate N3X’s gain in conciseness compared to
N3. There are 13 tests in the suite that include nested N3 calculations. To name
a few, these range from calculating Pi over calculating the date of Easter to
calculating the distance between GPS coordinates up to accounting. In addition,
there are 6 tests making extensive use of e:calculate that we could not translate
due to use of built-in Prolog predicates. Furthermore, we added the example of
Listing 1 and 2, a rule to iteratively calculate square root and one for Fibonacci
numbers. The results of rewriting those 16 examples are shown in Figure 1. On
average we reduced the number of triples by 30 %, the number of triples with
math:* -predicates by 65.2 % and the number of non-blank characters by 24.4 %.
In general, math-comparators can not be removed by N3X as they are used to
filter solutions rather than calculating new values.

N3X can only remove those triples with a functional predicate but never
adds one. Accordingly, N3X is never longer than N3 and the more functional
predicates are included, the more can be reduced. In some cases it was even
possible to remove all math:* -predicates (see Figure 1 cases 6, 8 and 11).

The full grammar of N3X and the evaluation’s documentation can be found
at http://github.com/MattesWhite/n3x.

2 https://github.com/josd/eye/tree/master/reasoning/

http://github.com/MattesWhite/n3x
https://github.com/josd/eye/tree/master/reasoning/

4 M. Farnbauer-Schmidt, et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Tr
ip

le
s

re
la

ti
v
e
 t

o
 N

3
 t

ri
p

le
s

N3X rewrites

N3 triples N3 math N3X triples N3X math

Fig. 1. Results of evaluation. Comparison of triples in rules. Included are the number
of triples with a math:* -predicate.

5 Conclusion and Future Work

N3X introduces SPARQL expressions to N3. Compared to N3, rules become
shorter, depending on the number of functional statements included. The basics
of the syntax for this extension was presented.

In the future, we will provide formal semantics for N3X based on the core
logic presented in [1]. With syntax and semantics defined, we will implement a
prototype N3X-engine to compare it with existing N3-engines and Prolog imple-
mentations.

N3 includes the built-in predicate log:semantics which allows engines to fetch
and parse documents from the Web to extend their knowledge base. N3X intro-
duces explicit function calls. We plan to leverage this as a hook to retrieve
functions from the Web, e.g. in the form of Web Assembly (WASM) modules
[3].

References

1. Arndt, D., Schrijvers, T., De Roo, J., Verborgh, R.: Implicit quantifica-
tion made explicit: How to interpret blank nodes and universal variables
in Notation3 Logic. Journal of Web Semantics 58, 100501 (Oct 2019).
https://doi.org/10.1016/j.websem.2019.04.001

2. Berners-Lee, T., Connolly, D.: Notation3 (N3): A readable RDF syntax. W3C
team submission, W3C (Mar 2011), https://www.w3.org/TeamSubmission/2011/
SUBM-n3-20110328/

3. Rossberg, A.: Webassembly core specification. W3C recommendation, W3C (Dec
2019), https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/

4. Seaborne, A., Harris, S.: SPARQL 1.1 query language. W3C recommendation, W3C
(Mar 2013), http://www.w3.org/TR/2013/REC-sparql11-query-20130321/

5. Szilagyi, I., Wira, P.: Ontologies and Semantic Web for the Internet of Things - a sur-
vey. In: IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics
Society. pp. 6949–6954 (Oct 2016). https://doi.org/10.1109/IECON.2016.7793744

https://doi.org/10.1016/j.websem.2019.04.001
https://www.w3.org/TeamSubmission/2011/SUBM-n3-20110328/
https://www.w3.org/TeamSubmission/2011/SUBM-n3-20110328/
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/
https://doi.org/10.1109/IECON.2016.7793744

N3X: Notation3 with SPARQL Expressions 5

6. Verborgh, R., De Roo, J.: Drawing Conclusions from Linked Data on
the Web: The EYE Reasoner. IEEE Software 32(3), 23–27 (May 2015).
https://doi.org/10.1109/MS.2015.63, conference Name: IEEE Software

https://doi.org/10.1109/MS.2015.63

	N3X: Notation3 with SPARQL Expressions

