
Towards Cost-model-based Query Execution
over Hybrid Linked Data Fragments Interfaces

Amr Azzam
1
, Ruben Taelman

2
, Axel Polleres

1

1Vienna University of Economics and Business, Vienna, Austria, amr.azzam@wu.ac.at

2
IDLab, ELIS, Ghent University – imec, ruben.taelman@ugent.be

Abstract. A multitude of Linked Data Fragments (LDF) server interfaces have been
proposed to expose Knowledge Graphs (KGs) on the Web. Each interface leads to
different trade-offs when clients execute queries over them, such as how query
execution  effort  is  distributed  between  server  and  client.  There  is  however  no
single  silver bullet that works best everywhere. Each of these interfaces has di‐
verse characteristics that vary the performance based on server load, client re‐
sources, and network bandwidth. Currently, publishers can only pick one of these
interfaces to expose their KGs on the Web. However, in some cases, multiple in‐
terfaces may be suitable for  the publisher,  and these may even vary over time
based on the aforementioned factors. As such, we propose a hybrid LDF interface
that  can  expose  multiple  interfaces  based  on  a  server-side  cost  model.
Additionally,  we sketch a negotiation protocol  through which clients  can deter‐
mine desirable interfaces during query planning using a client-side cost model. In
this paper, we lay out the high-level ideas behind this hybrid framework, and we
explain  our  future  steps regarding implementation and evaluation.  As such,  our
work provides a basis for exploiting the trade-offs that exist between different LDF
interfaces for optimally exposing KGs on the Web.

1. Introduction

The rapid growth of open and decentralized Knowledge Graphs over the Web has
cre‐ ated an immense demand for public Knowledge Graph query services. However,
serv‐ ing live queryable Knowledge Graphs on the Web is difficult  due to the low
availabil‐ ity  [1]  and  expensive  hosting of  SPARQL endpoints.  As an alternative,
publishing data dumps moves query effort to the client, but this may not always be
desirable. Recently, the Linked Data Fragments (LDF) [1] framework was introduced
to explore the range of Web query interfaces that exist between SPARQL endpoints
and data dumps that distribute query execution load between clients and servers.
Several  approaches have emerged following this framework such as Triple Pattern
Fragments (TPF) [1] and Bindings-Restricted TPF (brTPF) [2], SaGe [3] and smart-KG
[4], each offering their own trade-offs. For instance, TPF and brTPF increase server
availability  at  the  cost  of  increased network  load.  SaGe enhances  average query
performance at  the  cost  of  increased server  load  for  concurrent  complex queries.
smart-KG increases server  availability  at  the cost  of  higher  client  effort.  Research
shows that no single optimal approach exists, but they all have their advantages and



disadvantages. As such, there is a need for a hybrid LDF approach that determines
one or more efficient query approaches based on changing circumstances.

A preliminary hybrid LDF approach [5] investigated the diversity of LDF characteris‐
tics [6] that can influence query execution plans. Another proposal [7] provides a dif‐
ferent interface based on the current server workload. None of the aforementioned
hy‐ brid  approaches  allow  clients  and  the  server  to  negotiate  query  interfaces
depending on factors such as the executed query, server load, client capabilities, and
network bandwidth.  In this paper,  we propose a negotiation-based hybrid.  Using a
server-side cost model, the server can expose one or more query interfaces based on
its current load, and the query that the client aims to execute. Using a client-side cost
model, an efficient query plan over the available interfaces can be determined. This
combination of server and client cost model ensure efficient usage of server and client
resources  to  aim for  the best  possible  query performance over  the  available  LDF
approaches.

2. Hybrid Framework

The goal of our framework is to expose different server interfaces based on the server
load and the queries. Instead of exposing just one interface per query, we expose a
collection of interfaces per query. This allows clients to select a combination of inter‐
faces based on their capabilities, query plans, and other circumstances.

Fig. 1: Overview of client-server communication for a cost-model-based query
execution over a hybrid of Linked Data Fragments interfaces.

To achieve such a server interface hybrid, a server cost model selects a set of
inter‐ faces based on a given query and the server current load. While a client
cost  model  determines  a  query  plan  based  on  the  granted  interfaces.  Fig.  1
shows an overview of  this framework where client-side query engines start by
sending a query q to the server, and receive an answer that contains a token t
and a set of allowed interfaces I. Based on the returned interfaces, the client can
determine a query plan over these interfaces. These (sub)queries can then be
resolved by requesting the appropriate in‐ terfaces using the given token.

2.1. Server Component



The server component of our framework consists of a cost model for calculating a 
set of allowed interfaces, and a token-based wrapper over a set of interfaces.
Cost Model The goal of this server-side cost model is to ensure the server availabil‐ 
ity, and to allow queries to be executed as fast as possible. Since the latter goal can 
sometimes be detrimental to the server availability, for example when many concur‐ 
rent users are sending highly complex queries, availability must always have priority. 
Based on these goals, the model should be able to make a suggestion for a set of 
inter‐ faces based on a given query and a set of internal metrics. For this, we 
propose a set of internal metrics such as the current CPU usage, memory usage and 
network I/O. The threshold for these metrics can be configured so that the cost model 
can estimates the set of interfaces that optimize both goals.

Listing 1 shows the pseudocode of an algorithm that can be used to calculate a
set  of  allowed  interfaces.  GetValueIncrease  would  still  need  a  concrete
implementa‐ tion.  For  this,  different  possibilities  exist,  such  as  heuristics  to
predict query execution effort based on the number of triple patterns and query
operators.

GetInterfaces(q, metrics, interfaces, GetValue, GetThreshold)
allowedInterfaces = []
FOREACH interface IN interfaces

validInterface = true
FOREACH metric IN metrics

increase = GetValueIncrease(metric, q, interface)
IF GetValue(metric) + increase > GetThreshold(metric)

validInterface = false
IF validInterface

allowedInterfaces.push(validInterface)
RETURN allowedInterfaces

Listing 1: Algorithm for calculating the allowed interfaces for a given query.

Interface Wrapper Based on the server-side cost model, the server can wrap over a 
number of LDF interfaces that the publisher wants to expose. This wrapper is a proxy 
that accepts SPARQL queries, and replies with a token and a set of granted interfaces
that have been estimated for the given query. The token is required for performing any
requests to any of the wrapped LDF interfaces. This token should be seen as tem‐ 
porary permission to make use of a specific set of query capabilities from the data 
publisher. The server must validates this token upon every request to an LDF interface
to prevent the clients from ignoring the set of allowed interfaces and execute queries 
using the most expressive interface (e.g. SPARQL endpoint).

2.2. Client Component

Usually,  the goal  of  clients  is  to  execute queries as fast  as possible.  There could
how‐ ever be a number of metrics that can soften this need for fast query execution
such as reducing CPU, bandwidth usage or optimizing for early results [8]. Using our
server-side hybrid of LDF interfaces, clients will retrieve a set of allowed interfaces
based on



given query. With respect to the client resources, the client should determine an effi‐
cient query plan based on the granted interfaces capabilities. While most client-side
query algorithms focus on decomposing queries for execution against a single type of
interface,  additional  algorithms are needed for  intelligently combining interfaces for
certain subqueries [5]. Another metric that influences the selection is the location of
dataset fragments, locally [4] or within a network of peers [9].

3. Conclusions

This article outlines our high-level framework. We plan to implement the server and
client components, and evaluate different cost models. The client component will be
implemented using the Comunica platform [10] as a Mediator that can determine op‐
timal interfaces based on the current metrics. This enable us to focus on the cost
model  of  the client,  as Comunica supports  the majority  of  the LDF interfaces and
SPARQL query operators. Our envisioned cost-model-based framework for enabling
query execution over hybrid LDFs is a key element in achieving the vision of a Web
where any client can query data over any combination of heterogeneous interfaces.

References

1. Verborgh, R., Vander Sande, M., Hartig, O., Van Herwegen, J., De Vocht, L., De
Meester, B., Haesendonck, G., Colpaert, P.: Triple Pattern Fragments: a Low-cost
Knowledge Graph Interface for the Web. Journal of Web Semantics. (2016).

2. Hartig, O., Buil-Aranda, C.: Bindings-Restricted Triple Pattern Fragments. 
In: Proc. of ODBASE. pp. 762–779 (2016).

3. Minier, T., Skaf-Molli, H., Molli, P.: SaGe: Web Preemption for Public SPARQL 
Query Services. The World Wide Web Conference. 1268–1278 (2019).

4. Azzam, A., Fernández, J.D., Acosta, M., Beno, M., Polleres, A.: SMART-KG:
Hybrid Shipping for SPARQL Querying on the Web. In: Proceedings of
The  Web  Conference  2020.  pp.  984–994.  Association  for  Computing
Machinery, New York, NY, USA (2020).

5. Montoya, G., Aebeloe, C., Hose, K.: Towards Efficient Query Processing over
Heterogeneous RDF Interfaces. In: DeSemWeb@ISWC (2018).

6. Montoya, G., Keles, I., Hose, K.: Analysis of the Effect of Query Shapes on
Performance over LDF Interfaces. In: QuWeDa@ISWC (2019).

7. Khan, H.: Towards More Intelligent SPARQL Querying Interfaces. In: 
International Semantic Web Conference (2019).

8. Acosta, M., Vidal, M.-E., Sure-Vetter, Y.: Diefficiency metrics: measuring the
continuous efficiency of query processing approaches. In: International 
Semantic Web Conference. Springer (2017).

9. Grall, A., Skaf-Molli, H., Molli, P.: SPARQL Query Execution in Networks of
Web Browsers. In: DeSemWeb (2018).

10. Taelman, R., Van Herwegen, J., Vander Sande, M., Verborgh, R.: Comunica: a
Modular SPARQL Query Engine for the Web. In: Proceedings of the 17th 
International Semantic Web Conference. pp. 239–255 (2018).


