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Abstract. Diseases and their symptoms are a frequent information need
for Web users. Diseases often are categorized into sub-types, manifested
through different symptoms. Extracting such information from textual
corpora is inherently difficult. Yet, this can be easily extracted from
semi-structured resources like tables. We propose an approach for iden-
tifying tables that contain information about sub-type classifications and
their attributes. Often tables have diverse and redundant schemas, hence,
we align equivalent columns in disparate schemas s.t. information about
diseases are accessible through a unified and a common schema. Ex-
perimental evaluation shows that we can accurately identify tables con-
taining disease sub-type classifications and additionally align equivalent
columns.

1 Introduction

Publicly available medical resources like PubMed1, or MedQuad [1] (a Q&A
dataset about disease information), serve as a training ground for Q&A systems
with use cases such as symptoms and disease identification [2]. Yet, these repos-
itories are mostly unstructured and require extensive efforts for reasoning over
concepts like disease, or different types that diseases or genetic syndromes may
have.

On the other hand, for structured resources, like the Disease Ontology (DO)2

or the classification schema International Classification of Diseases (ICD)3, ac-
cessing information is trivial, however, coverage is limited. DO uses up to seven
features to describe a disease (e.g. ID, name, description) while ICD provides
only a textual description and a link to the parental disease in the taxonomy.

Recent efforts, focused on harnessing information from Web tables, show
that tables are rich in information coverage (e.g. more than 4k medical articles
in Wikipedia). Often, tables can be interlinked with each other according to their
topic similarity [6], thus, producing even a richer landscape of information that
can be extracted from tables.

In this work, our main aim is to harness information from tables contain-
ing medical information about disease sub-type classifications (e.g. Arthritis
has two common types Osteoarthritis and Rheumatoid Arthritis) and their

1 https://www.ncbi.nlm.nih.gov/pubmed/ 2 https://disease-ontology.org/
3 https://www.who.int/classifications/icd/en/
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Fig. 1. Examples of three different disease tables with equivalent columns marked in
green.

characteristics and symptoms, to enrich existing medical corpora like MedQuad,
such that Q&A application can provide more faceted answers from the rich table
structures, contrary to the short and ambiguous summaries in MedQuad dataset.

To do so, we address two problems. First, from the tables’ corpus, TableNet [6],
we identify tables that contain information about disease sub-type classifications,
and second, due to diversity of table schemas, we align related or equivalent
columns. These steps ensure our goal to provide a common schema, which al-
lows for a unified access to all tables containing disease classification related
information. In this paper, we make the following contributions:

– an approach for identifying tables about disease types or genetic syndromes;
– an approach for aligning columns that refer to equivalent or related concepts;
– a corpus under a common schema for tables related to disease type classifica-

tions.

2 MedTable: Table Identification and Column Alignment

In this section, we present our approach MedTable and describe the two main
steps for generating the corpus of tables containing disease classification related
information.

2.1 Table Identification

Our testbed for tables is the TableNet[6], with more than 3M tables. How-
ever, only a small portion of tables is of interest, namely, containing information
related to possible (-sub)types of a disease. In the following, we describe the
features that we construct for building a supervised machine learning model for
classifying tables into either containing (-sub)types of diseases or not. Since our
tables’ corpus consists of tables and the corresponding Wikipedia articles from
where they are extracted, we consider the following two feature categories.

Article level features. The choice of article features is to consider the
context in which a table occurs. This is necessary as some tables are under-
specified and the actual information can be interpreted only in conjunction with
the article information [4,5]. We consider the Wikipedia article name, section
label, and the average word representation of a section’s text [11]. Contextual
information is necessary as the models learn to distinguish between tables that
have similar structures, but topically are highly divergent.
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Table related features. Even though context is important, another set
of crucial features are extracted from the tables themselves. We additionally
consider the column names as one of our features. The intuition here is that
column names provide crucial hints on the information that the column stores.

2.2 Column Alignment

After having classified tables whether they contain (sub-)type diseases infor-
mation, the objective here is to align columns that are semantically related or
equivalent. This is a necessary step, as table schemas across tables are not stan-
dardized and often columns with the same information are named differently (cf.
Fig.1). Furthermore, column names are ambiguous, and as such a simple lexical
match is insufficient.

For that reason we follow a similar approach to those used on schema match-
ing for knowledge graphs [8,9,3]. For a column pair 〈ci, cj〉 from two disparate
table schemas, we extract features from the columns, namely the cell values
from the respective tables they are extracted, and train a supervised model that
classifies them into either equivalent or not.

We consider the following column features. First, from the column heading
we construct an average word representation based on GloVe pretrained embed-
dings [11], correspondingly, we measure the cosine similarity of such representa-
tions for the columns ci and cj . Second, since column names can be ambiguous,
hence, we consider features that are computed based on the column cell val-
ues. For columns whose cell values are already interlinked to Wikipedia entities,
we consider the average node embedding representation from all instances, by
training the graph embeddings based on node2vec [7] on the Wikipedia’s anchor
graph. That is, for the pair 〈ci, cj〉, we compute the cosine similarity of such rep-
resentations. Third, for cell values that are simple literals (i.e. numbers, strings
etc.), we consider the jaccard similarity of the corresponding values, and in the
case of numerical values, we compute the Kullback-Leibler divergence from the
corresponding probability distributions of the cell values.

3 Evaluation

The evaluation setup and approach of this work is available for download4.

3.1 Dataset & Ground Truth

Diseases Dataset. We collect all the Wikidata (WD)5 instances of class Disease
(wd:Q12136), resulting in 11k instances. From the resulting subset, we consider
only those that have a corresponding article in the English Wikipedia (WP)
resulting in 4386 pages, out of those 327 contain tables. We additionally inves-
tigated the diseases’ ontology from the BioSNAP Datasets [10], resulting in an
additional 17 diseases that did not exist in the WD corpus. Finally, our dataset
consists of 344 WP disease articles.

4 https://github.com/koutraki/medtable 5 Accessed 17.04.2019
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TableNet – Data. From the 344 WP pages, we extract 764 tables from the
TableNet [6], consisting of 5,738 rows in total, with 990 distinct columns.

Ground Truth. We manually constructed the ground-truth for both classifica-
tion steps in our approach. For the first step, table classification., we anno-
tated all the 764 tables of our dataset, resulting in 190 relevant tables, and the
remainder are not related to (sub-)type disease classification. Whereas, for the
second step, column alignment., we randomly sampled a set of 350 column
pairs from the tables to assess which columns can be aligned, which resulted in 66
aligned column pairs, whereas the remainder of column pairs did not represent
equivalent columns.

3.2 Results and Discussion

In this section we discuss the obtained results for both steps in our approach. In
both cases, we train a logistic regression model based on the described feature
sets in Section 2.1 and 2.2. We evaluate the performance of our models based on
evaluation metrics such as: precision – P, recall – R and F1. Evaluation results
in Table 1 and 2 correspond to 5-fold cross validation.

Table 1. Table classification results.

P R F1

article features 0.82 0.68 0.74
table features 0.86 0.53 0.66

all 0.87 0.73 0.80

Table 2. Column alignment results.

P R F1

equiv. 0.867 0.703 0.78
non-equiv. 0.922 0.970 0.95

Table Classification. Table 1 shows the results of the table classification
step, and the feature ablation. Note how the two feature sets are complementary,
in that, article features provide better coverage, which was our initial intuition
as well by capturing contextual information from the articles which describe the
diseases listed in a table. On the other hand, table features are more accurate
predictors of tables that contain (sub-)type disease information. This is mostly
attributed to specific columns that are often to describe disease classifications
and describing their symptoms (e.g. “Type” the table contains relevant infor-
mation to (sub-)types of the disease). Jointly, the model is able to achieve high
classification performance with an overall score of F1=0.80.

Column Alignment. Table 2 shows the classification results for the column
alignment step. Note here that the two classes are highly imbalanced, with the
equiv class representing only 18% of the dataset. The achieved results are highly
satisfactory, reaching a high F1 score of 0.78. This allows us to align columns
that are equivalent across disparate table schemas, and thus, offer a unified way
to access the disease (sub-)type classifications and their descriptions through a
common schema.
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4 Conclusions

We present MedTable, an approach for identifying tables about (sub-)types of
diseases and correspondingly aligning columns that represent equivalent con-
cepts. We performed an evaluation on the TableNet corpus, where we evaluated
on manually constructed ground-truth. We identified nearly 200 relevant tables
and were able to align 18% of columns as equivalent. The generated corpus will
be made publicly available and can serve for Q&A approaches in the medical
domain.
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