
Semi-automatic RDFization
using automatically generated mappings

Noorani Bakerally1,2,

Cyrille Bareau3, Fabrice Blache3, Sébastien Bolle3, Christelle Ecrepont2, Pauline
Folz3, Nathalie Hernandez1, Thierry Monteil2, Gilles Privat3, and Fano Ramparany3

1 IRIT, Toulouse, France {firstname.lastname}@irit.fr
2 LAAS-CNRS, National

Institut of applied Sciences of Toulouse, Toulouse 31400, {firstname.lastname}@laas.fr
http://www.springer.com/gp/computer-science/lncs

3 Orange Labs, Meylan, France
{firstname.lastname}@orange.com

Abstract. Most data available on the Web do not conform to the RDF data
model. A number of tools/approaches have been developed to encourage the
transition to RDF. Manual and automatic tools/approaches tend to be complex
and rigid. On the other hand, semi-automatic tools can hide and automate
complex tasks while enhancing flexibility by solicitating human experts for
decision making purposes. In this paper, we describe a semi-automatic approach
to facilitate the transformation of heterogeneous semi-structured data to RDF.
The originality of our approach is its ability to generate exhaustive descriptions
using entities from several ontologies without requiring end-users to have a
knowledge of ontologies. We provide an implementation of our approach and
demonstrate its use using a real dataset from an open data portal.

Keywords: RDF, Data transformation, Semi-automatic approach

1 Introduction

To realize the vision of the Semantic Web, the conformance of existing data to the RDF
model is a necessary condition. Yet, it is a fact that most of the data available on the
Web do not satisfy this requirement. A number of tools have been developed to facilitate
the transition to RDF. Much of them are founded on well-defined mapping languages
(R2RML [1], RML [2], SPARQL-Generate [3], etc.). Using mapping languages directly
is complex. This is because they have a steep learning curve and require knowing the
syntax and semantics of the languages in addition to the Semantic Web stack and
ontologies that can be used.

Besides mapping languages, there are automatic and semi-automatic RDFizers.
We ignore automatic RDFizers (e.g. Direct Mapping [4], Docker2RDF [5], etc.) as
their transformation cannot be customized or they are restricted for specific domain
models. The minor category of works (RMLEditor [6], OpenRefine [7], etc.) around
semi-automatic RDFizers is our main interest. We focus on this category due to their
ability in aiding end-users by automating complex tasks without hindering flexibility
by incorporating them for decision making and validation. The main problem with the

http://www.springer.com/gp/computer-science/lncs


2 N. Bakerally et al.

latter tools is that they mostly only provide a graphical interface with some facilities
for searching through ontologies. By doing so, they still rely on end-users with respect
to their knowledge about ontologies and data modeling using them.

In this work, our aim is to provide an approach to further facilitate semi-automatic
RDFizers by automatically generating mappings without prior knowledge about on-
tologies, that may then be customized by end-users. The originality of our contribution
is that it automatically generates several holistic mappings and try best to provide an
exhaustive description for a given type of objects. To ensure exhaustivity, the type of
objects can be described with entities defined in several ontologies as long as semantic
coherence is maintained. Our approach is not an alternative but complementary to
existing tools. In the rest of this paper, we describe our approach and its implementation
in Section 2 and Section 3 respectively. Then, we demonstrate our implementation
using a real dataset from open data portal. Finally in Section 5, we conclude with
limitations of our approach and future works.

2 Our Approach

We use a divide-and-conquer strategy to RDFize non-RDF data. The base case of this
strategy occurs when the non-RDF data describes only one type of object. In this paper,
our approach is focused on this base case. Our approach to generate final mappings con-
sists of four main steps: i) Generate Schema Descriptions ii) Generate candidates
iii) Generate candidate mappings iv) Refine candidate mappings, as shown in
Figure 2. The refined mapping selected by the user is then automatically represented
in a mapping language and used to generetaed the RDF representation of the data.

For illustration purposes, we consider a parking dataset4 from Grenoble open data
portal5. Figure 1 is part of a preview of that dataset taken directly from the data portal.
Moreover, our approach uses an Ontology repository, as despicted in Figure 2.

Fig. 1. Parking data from Grenoble Open Data Portal

Suppose that it contains the vocabularies MobiVoc6, Schema.org7, WGS848 and Dublin
Core Metadata Terms9.

4 http://data.metropolegrenoble.fr/ckan/dataset/parkings-de-grenoble/resource/
a6919f90-4c38-4ee0-a4ec-403db77f5a4b, last accessed on 7 December 2019

5 http://data.metropolegrenoble.fr/, last accessed on 7 December 2019
6 https://www.mobivoc.org/, last accessed 10 February 2020
7 https://schema.org/, last accessed 10 February 2020
8 https://www.w3.org/2003/01/geo/, last accessed 10 February 2020
9 https://www.dublincore.org/specifications/dublin-core/dcmi-terms/, last accessed 10

February 2020

http://data.metropolegrenoble.fr/ckan/dataset/parkings-de-grenoble/resource/a6919f90-4c38-4ee0-a4ec-403db77f5a4b
http://data.metropolegrenoble.fr/ckan/dataset/parkings-de-grenoble/resource/a6919f90-4c38-4ee0-a4ec-403db77f5a4b
http://data.metropolegrenoble.fr/
https://www.mobivoc.org/
https://schema.org/
https://www.w3.org/2003/01/geo/
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/


Semi-automatic RDFization using automatically generated mappings 3

Raw data

SchemaInstances

Generate 
Schema 

Description

Schema 
Description

Type 
Description

Element 
Description

Generate 
combinations

Enrich with paths 
linking required 

entities

Candidate 
Mappings

Generate 
candidate 
classes

Generate 
candidate 

classes/data 
properties

Ontology Repository

Fig. 2. Mappings Generation Process

Below, we proceed with the descriptions of the steps in our approach.

Generate Schema Description In our approach, we suppose that the file to be transformed
contains only one type of object. We make the difference between the type of object
(Type element) and its properties (Schema element). To capture the background
knowledge about the schema used in the raw data, we generate a Schema description
consisting of a Type description and Elements description, via a user interface
(cf. Section 3) with the involvement of the end-user.

Type Description characterizes the type of objects described by the schema and
Elements descriptions characterizes the schema elements (e.g. lon in Figure 1).
For both, Type Description and Elements Description, the description can be
enriched by keywords added by the end-user. The schema description may not
contain a description for all columns. For example, the schema description of the data
in Figure 1 may omit the description of the column CODE as it contains the same
information as the column id. In this way, uninterested columns may be ignored.

Generate candidates Using an Ontology repository, and the Schema description,
a set of candidate classes are generated for typing objects, thanks to Type description
and a set of candidate data properties or classes are generated for modeling the schema ele-
ment, thanks to Elements description. The Schema description is then converted
into a pseudo-ontology in OWL and simple ontology matching approaches presented in
[8] are used to generate the candidate for the Type element and Schema elements.
Table 1 shows a schema description for the schema of Figure 1 and generated ontology en-
tities for its elements. For example, the objects’ type in Figure 1 can be described by the
keyword ‘parking facility’. Using the latter description, the classes mv:ParkingFacility
and sc:Park are generated to type the objects. Similarly, the schema element TOTAL is
described using the keywords ‘capacity’ and ‘total’ using which the class mv:Capacity
and data property sc:totalTime are candidates generated to model it. The candidate
proposal sc:totalTime is not appropriate to model TOTAL as its semantics is not
compatible with the latter. To determine the appropriateness of an entity, we also
generated a confidence. For the sake of simplicity, we omit this information from Table 1.

Generate candidate mappings Candidate mappings are build in two steps. First,
candidate entities are combined with a cartesian product, producing a set of combination



4 N. Bakerally et al.

Schema Description Generated Entities
Keyword Classes Data Properties

Type
Description

‘parking facility’
mv:ParkingFacility,
sc:Park

Elements
Description

id ‘identifier’ dc:identifier
LIBELLE ‘description’ sc:description
TOTAL ‘capacity’,‘total’ mv:Capacity sc:totalTime
lat ‘latitude’ wgs84:lat
lon ‘longitude’ wgs84:long
ADDRESSE ‘address’ sc:address

Table 1. Candidate entities for typing and schema elements

Type Class id LIBELLE TOTAL lat lon ADDRESSE
1. mv:ParkingFacility dc:identifier sc:description mv:Capacity wgs84:lat wgs84:lon sc:address

2. mv:ParkingFacility dc:identifier sc:description sc:totalTime wgs84:lat wgs84:lon sc:address

3. sc:Park dc:identifier sc:description mv:Capacity wgs84:lat wgs84:lon sc:address

4. sc:Park dc:identifier sc:description sc:totalTime wgs84:lat wgs84:lon sc:address

Table 2. Combinations of generated entities for type class and schema elements

of mappings where a combination of mappings consists of a candidate class for
typing the object, that we refer as the type class, and a candidate data property
or class for each schema elements. Table 2 shows all combinations generated from the
candidate entities in Table 1. As we can see, in each combination, there is one candidate
entity for the type class and one for each schema element. In a second step, we keep
combination of mappings where we can assess the existence of a path between the
type class and candidate entities for the schema element. These paths are identified
using patterns that we have defined. They exploit the graph structure of ontologies.
For example, Figure 3 shows the first combination from Table 2 and the required
paths, illustrated as dotted lines, that will be generated at this step. It is possible that
more than one path or no path exist between some entities. We then obtain a set of
candidate mappings.

Generate final mapping A user interface is provided to allow choosing and refin-
ing a candidate mapping to obtain the final mapping. There are cases where a
schema element may be modeled by a class. In these cases, data properties containing
the latter class in their domains may be used to specify the values. Refining consists
in choosing the appropriate data property.

mv:ParkingFacility
Type Class

mv:Capacity
TOTAL

rdfs:Literal

wgs84:lat
lat

dc:identifier 
id

wgs84:long
lon

rdfs:Literal

sc:address
ADDRESSE

mv:capacity

xsd:integer

mv:maximumValue

sc:description
LIBELLE

Fig. 3. Candidate mappings for first combination without generated paths



Semi-automatic RDFization using automatically generated mappings 5

3 Implementation

An overview of our implementation, SAURON, is shown in Figure 4. Core to SAURON is
the RDFizer that generate final mappings using the approach described in the previous
section. To facilitate human intervention, we provide a graphical User Interface.
Using the interface, users can upload the raw data in the CSV format and may enrich it
with keywords to generate the Schema description. The User Interface interacts
with the RDFizer via a Web Service. Eventually, on obtaining the candidate mappings,
one of them is chosen and refined and validated by the end-user and sent to the web
service together with the raw data for transformation to RDF. This is done with
SPARQL-Generate in the current implementation.

User 
Interface

Ontology Repository RDFizer Web Service

Schema description

Candidate mappings

selected mapping+raw data

RDFized data

Fig. 4. Overview of SAURON

The user interface is a web application implemented using the JavaScript library
React10. The video available online11 shows the use of the interface to generate mappings
for the CSV parking dataset in Section 2. As it can be seen, the user interface has
three main parts. The top left part is focused on the raw data that is imported using
the import CSV menu item. On clicking on a column, keywords can be entered. The
bottom left part shows the candidate mappings and on selecting one of them, its
corresponding description graph is rendered on the right part. The end-user can interact
with different part of the latter graph and select and validate the paths.

4 Demonstration

During this demonstration, we intend to RDFize Grenoble parking dataset partly
shown in Figure 1. We perform two experiments: NK and WK. In NK, we only specify
the type description with keywords. In WK, we also specify keywords for interested
columns. These keywords are shown in Table 1. Results are despicted in Table 3. As
we can see in Table 3 and the video, adding keywords greatly improve the quality of
mappings that are generated.

5 Conclusion

We have tested our approach on real datasets from open data portals and the results
were promising. However, there are three main limitations. Firstly, the success of the

10 https://reactjs.org/
11 https://youtu.be/LKZH4gs7sNQ

https://reactjs.org/
https://youtu.be/LKZH4gs7sNQ


6 N. Bakerally et al.

approach depends much on the selection of keywords. It may not be easy for the user
to define the keywords that will correspond to labels of ontologies entities. An extension
of the approach that will suggest keywords according to these labels is currently being
implemented. Secondly, as mentioned in Section 2, our approach can consider raw data
containing only one type of object described by several data properties. However in
some cases, the object can be link in its description to other objets. Approaches dealing
with entity resolution and entity linking could be used. Thirdly, as of now, there are
no alignments between the ontologies in the ontology repository. The existence of these
alignments can improve the quality of the generated mappings.

LIBELLE ADRESSE TOTAL id lon lat
NK – schema:adress – mobivoc:id – –
WK schema:label schema:adress mv:Capacity dc:id geo:long geo:lat

Table 3. Initial mappings without keywords (NK) and with keywords (WK)

References

1. Souripriya Das, Seema Sundara, and Richard Cyganiak. R2RML: RDB to RDF Mapping
Language, W3C Recommendation 27 September 2012. Technical report.

2. A. Dimou, M. Vander Sande, P. Colpaert, R. Verborgh, E. Mannens, and R. Van de Walle.
RML: A generic language for integrated RDF mappings of heterogeneous data. In LDOW,
2014.

3. M. Lefrançois, A. Zimmermann, and N. Bakerally. Flexible rdf generation from rdf and
heterogeneous data sources with sparql-generate. In EKAW. Springer, 2016.

4. Marcelo Arenas, Alexandre Bertails, Eric Prud’hommeaux, and Juan Sequeda. A Direct
Mapping of Relational Data to RDF, W3C Recommendation 27 September 2012. W3C
Recommendation, World Wide Web Consortium (W3C), September 27 2012.

5. Ahmed Ben Ayed, Julien Subercaze, Frederique Laforest, Tarak Chaari, Wajdi Louati,
and Ahmed Hadj Kacem. Docker2rdf: Lifting the docker registry hub into rdf. In 2017
IEEE World Congress on Services (SERVICES), pages 36–39. IEEE, 2017.

6. Pieter Heyvaert, Anastasia Dimou, Aron-Levi Herregodts, Ruben Verborgh, Dimitri Schu-
urman, Erik Mannens, and Rik Van de Walle. Rmleditor: a graph-based mapping editor for
linked data mappings. In European Semantic Web Conference, pages 709–723. Springer, 2016.

7. Ruben Verborgh and Max De Wilde. Using OpenRefine. Packt Publishing Ltd, 2013.
8. Elodie Thíeblin, Ollivier Haemmerĺe, Nathalie Hernandez, and Cassia Trojahn. Survey

on complex ontology matching. Semantic Web, (Preprint):1–39, 2019.


	Semi-automatic RDFization using automatically generated mappings

